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This Technical Note was originally given limited distribution
as NBS Report No. 5092, dated July 25, 1957. Since that time parts
of this report have been published in the following references:

(1) K. A, Norton, "Low and medium frequency radio
propagation®, Proc. of the International Congress on the
Propagation of Radio Waves at Liege, Belgium, October,
1958, to be published by the Academic Press.

{2} K. A. Norton, "System loss in radio wave propagation”,
J. Rescarch, NBS, 63D, pp. 53-73, July-August, 1959,

{3) K. A. Norton, "System loss in radio wave propagation”,
Letter to the Editor, Proc. I.R.E., to be puhlished.

All of the material in reference (1) is included in this
Technical Note, Some of the material in references (2) and (3) is
new, particularly the definitions of the new terms "system loss" and
U"propagation loss®, The transmission loss concept was adopted by
the C.C.I.R. at its IXth Plenary Assembly in L,os Angeles as is
discussed more fully in refercnce (3) above.




TRANSMISSION L.OSS IN RADIO PROPAGATION: 11
by

Kenneth A, Norton

/\ /l*:
SUMMARY

\

Ix\ an carlier report with this title the concept of trans-
mission ]o /s was defined and its advantages explained. In
this report™a survey will-be made of the transmission losses
expected for a wide range of conditions, i.e., for distances
from 10 to 10, 000 statute miles; for radio frequencies from 10 kc
to 100, 000 N(c; for vertical or horizontal polarization; for ground
waves, ionospheric waves, and tropospheric waves; over sea
water or over land which may be either rough or smooth; and for
various geographical and climatological regions.

N

Note:  The aitention of the reader is called to additional terms,
discussed in appendix III, which must be added to the transmis-
sion losses shown in this report when the antennas are near the
surface. These terms arise from changes in the antenna radia-
tion resistances which occur when the antennas are near the
surface, and represent important corrections to the transmission
loss, particularly at the lower frequencies where the antennas,
assumed to be 30 feet above the surface for many of the calcula-
tions, are only very small fractions of a4 wavelength above the
surface,




TRANSMISSION LOSS IN RADIO PROPAGATION: II
by

Kenneth A, Norton

1. Transmission Lioss in Radio Propagation
- ) "
We will-be, concerned primarily with the transmission loss

encountered in the propagation of radio energy between a transmit-
ting and a receiving antenna. Simple rnethods will be given for
determining the magnitude of this transmission loss and its varia-
tion in space and time (fading),for any frequency in the presently-
used portion of the radio specirum and for any kind of transmission
path likely to be encountered in practice, »In addition, methods will -
-be given for estimating radio noise and intcrference levels, When
combined, these two methods make possible the estimation of the
transmitter power and antenna gain required for satisfactory com-
munication, navigation, or other specific uses of the transmissions,

The transmission loss in a radio system involving propaga- /
tion between antennas is simply the ratio of the radio frequency - ./’
power, p., radiated from the transmitting antenna divided by the
resulting radio frequency power, p,, available from an cequivalent
loss-frce receiving antenna; thus the system transmission loss =
(pr /pa). We sce that the transmission loss of a system is a
dimensionless number greater than unity, and that it will often be
convenient to express this in decibels; the transmission loss, L,
expressed in decibels, is thus always positive:

t

=10 1og10 (pr /pa) = Pr - Pa n

See references 1, 2 and 3,

Throughout this report capital letters will be used to
denote the ratios, expressed in decibels, of the corresponding
quantities designated with lower-case type; e.g., P =10 ]oglop .

r T




This particular choice of definition excludes [rom the trarisrnis sion
loss the transmitting and receiving antenna circuit losses™ and any
loss which occurs in any transmission lines which may be used
between the transmitier and the transmitting antenna or between the
receiving antenna ard the receiver, This exclusion has the advan-
tage that it results in a measurc of loss which is attributable solely
to the transmission medium including the path antenna gain, Gp’
which arises from the directivities of the transmitting and receiving
antennas, In addition to the actual transmission loss, L, of the
system, it is also convenient to define the basic transmission loss,
Ly, to be the transmission loss expected if the actual antennas were
replaced by isotropic antennas; T this also serves to define the path
antenna gain;

Gp = Ly - L (2)

Consider first an idealized isotropic transmitting antenna
in frec space radiating a power, p,, expressed in watts, Such an
antenna produces a ficld intensity of pr/4nd watts per square mile
at a distance d expressed in miles provided d > >, The absorbing
area of a perfectly conducting, isotropic receiving antenna in free
space is equal to X2/417 where N is the free-space wavelength ex-~
pressed in miles; the resulting radio frequency power available from
cuch a receiving antenna when placed at a distance d > > X\ from the
isotropic transmitting antenna is thus p, = pr(X/4nd)2. Thus we find

Antenna circuit loss includes the ground losses arising
{rom the induction field of the antenna, but excludes losses
occurring in the radiation field.

T In some of the past literature on radio wave propagation,
the intensities of the expected fields have been given in terms of E,
ihe field strength expressed in decibels above one microvolt per
meter for one kilowatt effective power radiated from a half-wave
dipole. It can be shown that Ly and E are simply and precisely
related by Ly = 139,367 + 20 loglo f

.

- E
mc




that the basic transmission loss, Lyy, for isotropic antennas in free
space  is given by:

2
= = =36, _ d+2
L =10 loglo(pr/pa) 10 1og10(41'rd/)\) 36,58+ ZO]og10 + OloglofMC

(3)

In the above fM denotes the radio frequency expressed in megacycles.
C

Fig.]l shows this basic transmission loss for isctropic antennas in
free space. For d = 2\, Ly, = 28 db and thus (3) is only approximate
when the indicated values of Lbf are less than, say, 30 db,

In fact, whenever the calculated transmission loss is less
than, say 30 db, we must consider that the problem involves a
transfer of an appreciable portion of the power between the transmit-
ting and receiving antennas by other than radiation. For example,
there is a direct coupling between the antennas via their induction and
electrostatic fields, and this is a negligible factor in the calculation
of the transmission loss only when L > 30 db. When high gain
antennas are used, their separation must be much greater than 2\ in
order to maintain the condition 1, > 30 db.

For an actual radio transmission system there will always be
somc path antenna gain so that the transmission loss L = Ly - G
will be less than the basic transmission loss. In some systems the
free space gains Gy and G,. of both the transmitting and receiving
antennas, respectively, will be fully realized so that Gp = Gy + G,
For example, with half-wavce dipoles having a common cquatorial
plane and separated by a distance d > > X\ in free space
Gy = Gy = 2,15 db so that G_ = 4. 30 db; the transmission loss for such
a system is thus just 4.3 db less than that given by (3) and shown on
Fig.1l. Similarly, electrically short dipoles have gains

* In some of the past literature on radio wave propagation, the
intensities of the expected fields have been given in terms of '
A =1Ly - Lyy, the attenuation relative to that expected for propagation
in free space; in the case of surface wave propagation with vertical
polarization, the attenuation has usually been expressed relative to an
inverse distance field which is twice the free space field and thus
A' = 1y - Lye + 6,021 in this case.
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Gi = G, = 1. 76 db so that Gp = 3,52 db for propagation between

appropriately oriented electrically short dipoles in free space,

The free space gain of a large receiving antenna with an
effective absorbing area of a, square meters will incrcase with in-
creasing frequency at sufficiently high frequencies:

G = - 20 1 f -~ 38.54 4
T 10 1og10 ae 2 1Ogl.O Mc (4)
s 100/ T
(For fl‘v‘c / a, )

For example, a large parabolic antenna will have an effective ah-
sorbing arca a between 50 and 70 per cent of its actual area,
(o]

2. Transmission Loss in FF'ree Space

Before considering the additional influences of the carth's
surface and of its atmosphere on the propagation and transmission
loss of the radio waves, it is instructive to consider first the charac-
teristics of the transmission loss in free space for three kinds of

systems which are typical of most of the applications encountered
in practice,

Consider first a broadcast type of system in which essentially
non-directional antennas arc used at both terminals of the transmis-
sion path. TFor example, if hall wave dipoles were used we have
already seen that the system transmission loss, L, will be just 4.3db
less than that given by (3) and shown on Fig. 1. For such systems
we see that the loss increases rapidly with incrcasing frequency
becausc of the decreasing absorbing area of the receiving antenna,
For this reason such systems should, in general, use the lowest
available [requencies.

Consider next a type of broadcast service in which a directional
array may be usod at one end of the path: television is an cxample
since the televiewers in remote areas consistently use high gain re-
ceiving antennas. If wc assume that a half-wave dipole is used at
the other terminal, we may combine (3) and (4) and obtain for the
system transmission loss:

Lf = 72,97+ 20 1og10d - 10 log10 a, {5)




Note that the frece space transmission loss in this case is independent
of frequency. In this casec again, because oii"the additional loss
arising from the effects of irregular terrain™ which increasc with
increasing frecquency, it is generally desirable to keep this kind of
broadcasting service at the lowest available frequencies,

Finally consider a point-to~-point type of service in which
two identical high gain (and thus highly directional) antennas are used
at each terminal of the transmission path. For such a system the
free space trarmission loss may be obtained from:

= 113.6 - 201 L2
L, = 113.67 + 20 log  d - 20 log f 0log a_ (6)

Mc

For services of this type it is clear that the highest frequencies free
from the effects of atmospheric absorption are likely to be the most
cfficient, The above formula is applicable only to line-of-sight
systems vith first Fresnel-zone clearance over terrain which appears
rough to the radio waves, and we will consider later within-line-of-
sight smooth-terrain systems and beyond-the-horizon systems
employing tropozpheric scatter.

Rayleigh's criterion of the recughness may be used to determine
yieig
whether a surface appears to the radio waves to be rough or smooth:

4w O’h sin J

R = —— (7)

In the above equation . denotes the standard deviation of the terrain

heights relative to a smoothed mean height (see Fig. 2), ¢ = qJT = k{JR
denotes the grazing angle with the smoothed mean surface and

A is the wavelength expressed in the same units as oy. When R is
less than 0.1, there will be a well defined specular reflection from
the ground, but when R > 10, the reflected wave will be substantially

weaker and will usually have a very small magnitude. f

The concept of first Fresnel-zone clearance provides a means
of determining when the effects of the ground may be neglected so
that tiie simple formula (5) may be used for determining the expected

See reference 2.

[ Seec references 4, 5 and 6.
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transmission loss to a first approximation. ¥Fig. 2 illustrates the
first Fresnel zone concept. When the terrain along the path just
touches the elliptical first Fresnel-zone defined by the locus of points
such that a + b = d + )\ /2, the path is considered to have first Fresnel-
zone clearance for a system with wavelength A, On Fig, 2, T and R
represent the locations of the transmitting and rcceiving antennas.
The presence of the ground will have only a small effect on the propa-
gation, provided the antennas are sufficiently elevated so that none of
the terrain lies within the {irst Fresnel zone and if, in addition,

R > 10 so that the surface appears rough to the radio waves. *

3. Transmission Loss for Ground Wave Propagation

The ground wave is that component of the total received field
which has not been reflected (or scattered) from either the iono-
sphere or the troposphere. Itis convenient to divide the ground
wave into two components:! a space wave and a surface wave, ok
The space wave is the sum of a direct wave and a ground-reflected
wave, Figs. 3 and 4 give examples of space wave propaga‘cion.I
Near the radic horizon the ground-reflected wave is out of phase with
the direct wave, and the received fields are quite weak; as the re-
ceiving antenna is raised, the relative phase increases until finally
the direct and ground-reflected waves are in phase--at the lobe
maxima shown on Figs. 3 and 4. At still higher heights the relative

s
See references 7 and 8,

rSee references 3, 9, 10, 11, 12, and 173.
sleok
The term Norton surface wave has been used in several

recent papers in order to distinguish this component of the ground
wave from the Zenneck surface wave with which it has sometimes
been confused; the latter does not exist in practice as shown by Wise
in reference 14, A recent discussion of surface waves by Wait in
reference 15 further clarifies the physical nature of this and other
surface wave components.

See references 16 and 17 for a further discussion of air-to-
ground propagation,
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phase continues to increase, lobe minima and maxima occurring
where the direct and ground reflected waves are out-cf~phase and
in-phase, Figs. 3 and 4 may be used to show approximately what
happens at some other radio frequency, fj ., and ground antenna
height, h, if we modify the transmission losses indicated on these
{figures by adding 20 log (ch/328) and, at thc same time, determine
h for Fig. 3 by (h/35) = (328/fy.) and for Fig. 4 by (h/115)= (328/ch),
Figs. 3 and 4 correspond to smooth earth conditions, i.e.,
for R < <0.1. Inthis case the space wave field strength may be
represented approximately by:

F = ZFO sin{2m h sin Y /) (8)

For example, the above cquation represents very accurately the
expected field strength for propagation from a horizontal dipole over
a smooth, flat, perfectly conducting surface, where F is the field
strength in free space, F is the expected field strength at a receiving
point corresponding to a grazing angle ¥, and h is the height of the
ground terminal antenna above the smooth surface. The maximum

of the first lohe (F = ZFO) occurs when {2rh sin ¢/\) = 7/2; according
to Rayleigh's criterion (4w Lo sin $/XN) must he less than 0.1 for the
surface to appcar smooth to the radio waves., Combining these two
results we fiand that oy, must be less than h/10m , independent of the
frequency, if we are to expect (8) 1o apply at the angle § correspond-
ing to the maximum of the first lobe. Al stil] higher angles the
requirements for smmoothness of the terrain are correspondingly more
stringent, At lower grazing angles, however, the terrain may be
correspondingly rougher; for example, at the anglec below the first
lobe maximum where ¥ = 0,2 F corresponding to a transmission
loss 20 db greater than at the maximum of the lobe, o must be less
than 0, 5h for the earth to be considered sufficiently smooth for (8)

to apply and where F = 0,02 F corresponding to a transmission loss
40 db greater than at the lobe maxima, o, may be as large as 5h,
Thus we see that the large reduclions in the reccived field below the
maximum of the first lobe as shown on Figs. 3 and 4 and indicated by
{8) are expected to occur cven over comparatively rough terrain,

For propagation conditions such that R is large, i.e., high
frequencies, very rough terrain, or large grazing angles, the ground

11




reflected wave may be described statistically. If has been found™ that
the Rayleigh distribution is appropriate for this purpose when R is
very large, say R > 100, and that a2 combination of a constant spccular
component plus a random Rayleigh component is required for

0.01 < R €100. Fig. 5 shows theorelical probability distributions

for this case with the parameter K increasing from (-o0) for R<0,01
to values of K greater than 20 for R > 100, Here K is the level in
decibels of the mean power in the random, Rayleigh distributed,
component relative to that of the steady component. As an example

of the uge of probability distributions of this kind for describing

space wave propagation conditions, supposc we have an air-to-air
commmunication systerm operating at 328 Mc. As we fly over irregular
terrain at a fixed high altitude away from another aircraft at the samne
altitude (See Fig. 6), the grazing angle ¢ decreases {rom a compara-
tively large value to zero on the radio horizon, and this corresponds
to a decrease of R from a very large value to zero on the radie
horizon, Thus at short distances the ground-reflected wave will
fluctuate in magnitude aver a range indicated by the K = 20 curve on
Fig. 5, while at larger ranges thesc fluctuations will occur over

smaller and smaller ranges corresponding to the smaller velues of
K.

The above statistical description of space wave propagation
over rough terrain is appropriate for propagation paths with Fresnel-
zone clearance, For still smaller antenna heights involving propa-
gation very near to or just below grazing incidence, the received
space wave is log normally distribuied. ! For example, a s’rudy**
of the ficlds received on over-land paths from television stations in
the frequency range from 50 to 220 Mc¢ and on receiving antennas with
heights in the range from 12 to 30 feet indicates that the standard
deviation of the received fields is of the grder of 6 to 10 db about mean
values of the order of magnitude expected for propagation over a
smooth surface,

Finally, when the transmitting and recuiving antennas are
both actually on the surface, the received ground wave is a surface
wave. Furthermore, when the transmitting and receiving antennas

E

See references 4, 6 and 18,

f See references 2 and 19.

%
Sce referencce 19.
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DISTRIBUTION OF THE RESULTANT AMPLITUDE
OF A CONSTANT VECTOR PLUS A RAYLEIGH DISTRIBUTED VECTOR
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are both only a small {raction of a wavelength above the surface, the
received ground wave is still primarily a surface wave together with
a small space-wave component. The transmission loss in surface
wave propaga.’cion’k is very much influenced by the electrical constants
of the ground, especially its conductivity. Although efforts have been
made to correlate these ground constants with soil types so that pre-
dictions of the effective ground conductivity could be made, such
studies have not been very successful so far, However, a publication
of the National Bureau of Standards is available! which gives the
measured values of effective ground conductivity for various propa-
gation paths in the Uniied States. For propagation over average land
onc may use an effective ground conductlivity of 5 milli-mhos per
meter and an effective dielectric constant of 15 although individual
over land paths may have substantially different ground constants,
while over the sea the cffective ground conductivity is of the order of
5 mhos per meter with an cffective dielectric constant of 80.

Figs. 7, 8, 9, and 10 show the basic transmission loss ex~
pected for ground wave propagation over a smooth spherical earth
with the transmitting and receiving antcnnas both at a height of
30 feet, for either vertical or horizontal polarization and with ground
constants typical of over land and over sca water paths, At frequen-
cies less than 10 Mc, the antenna heights arc less than a wavelength
and the ground waves shown for vertical polarization are primarily
surface waves, whereas for frequencies greater than 100 Mc the
ground waves with these antenna heights arc primarily space waves
with enly a small surface wave component. Noie that the proxdmity
of the earth at low frequencies doubles the received fields for

vertically polarized waves, but suppresscs the propagation of hori-
zontally polarized waves:

i.e., horizontally polarized surface waves
are highly attenuated,

ITowever, at the higher frequencies involving
primarily space wave propagation, the expected transmission loss
becomes independent of the polarization used.

On frequencies above 10, 000 Mc the radio waves are
appreciably absorbed by the oxygen and water vapor in the atmos-
phere, Fig. 11 shows the {otal gaseous atmospheric absorption
near the surface at Washington, D, C. The absorption shown on
Fig. 11 is the median value; for small percentages of the {ime the
absorption will be considerably grecater as a result of absorption

ot

T

See refcrences 9, 10, 11, and 12,

See refcecrence 20.
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BASIC TRANSMISSION LOSS EXPECTED FOR GROUND WAVES
PROFPAGATED OVER A SMOOTH SPHERICAL EARTH
OVER LAND: o =0.005 MHOS/METER, €=15
POLARIZATION: VERTICAL
TRANSMITTING AND RECEIVING ANTENNAS BOTH 30 FEET ABOVE THE SURFACE
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BASIC TRANSMISSION LOSS EXPECTED FOR GROUND WAVES

PROPAGATED OVER A SMOOTH SPHERICAL EARTH

5 MHOS/METER, € = 80

POLARIZATION: VERTICAL
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BASIC TRANSMISSION LOSS EXPECTED FOR GROUND WAVES
PROPAGATED OVER A SMOOTH SPHERICAL EARTH
OVER LAND: o =0005 MHOS/METER, €=15
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BASIC TRANSMISSION LOSS EXPECTED FOR GROUND WAVES
PROPAGATED OVER A SMOOTH SPHERICAL EARTH
OVER SEAWATER' o =5 MHOS/METER, €= 80
POL.ARIZATION: HORIZONTAL
TRANSMITTING AND RECEIVING ANTENNAS BOTH 30 FEET ABOVE THE SURFACE
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AVERAGE GASEQUS ATMOSPHERIC ABSORPTION
NEAR THE GROUND AT WASHINGTON, D.C.
Meteorological Dato From the Ratner Report
July 11, 1957
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by rain, " The transmission losses shown on Figs. 7, 8, 9, and 10
for frequencies above 10, 000 Mc wove ¢stimated by using the August
absorption shown on ¥Fig, 11.

The heights of the antennas arc very important in ground wave
propagation at the higher {rcquencies, This is illustrated on Fig. 12
which shows for a {requency of 50 Mc the great reduction in trans-
mission loss expected when the antenna height at one terminal is

increased from zero up to 10, 000 feel while the other antenna height
is increased from zero up to 30 feet.

A
" .

Transmission Loss for Ionospheric Propagation

Radio waves with frequencies less than the maximum usable
frequency for a given transmission path arc reflected by the ionized
regions of the upper atmosphere with sufficient intensity so that they
often provide a mode of transmission with less loss than that involved
in ground wavce propagation. The maximum frequency usable on a
given ionospheric transmission path depends upon the length of the
path, its geographical location, the time of day, the season of the

year, and the phase of the sunspot cycle, Predictions of these

maximum usable frequencies are published regularly three months
in advance by the Central Radio Propagation Labora’cory.T Fig. 13
is an example of these predictions showing how the maximurn usable
frequencies vary with local time and with geographical location for a
path 4, 000 kilometers Tong., This particular chart is for February,
1957, a period near sunspot maximum as may be secen on Fig, 14
which shows the smoothied Zurich sunspot numbers from 1750 to 1957,
The sunspot numbers shown on Fig. 14 are averaged over a period of
13 months, but the author has shown in unpublished work that the
sunspot numbers obtained by averaging over a period of thrce months
are just as well correlated with ionospheric propagation conditions
and thus provide a more uscful index for prediction purposes. Fig. 15
shows a typical correlation betwecen the obscrved maximum usable
frequencies and these three-months-snioothed sunspot numbers,

b
See references 21, 27 zed 23.

See rcizrences 24 and 25.
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BASIC TRANSMISSION LOSS EXPECTED IN PROPAGATION
OVER A SMOOTH SPHERICAL EARTH AT 50 MEGACYCLES

HORIZONTAL POLARIZATION,; o =0.005 MHOS/METER; €=15
FOR THE TERMINAL ANTENNA HEIGHTS INDICATED
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4.1 Very Low Frequency Ionospheric Propagation

At the very low frequencies below 30 ke, the ionosphere
reflects the waves at relatively low heights, about 70 km in the day~
time and 90 km at nighi. At these low heights the ionization gradients
are sufficiently large so that the ionosphere behaves as a sharp
boundary, and it is convenient to use wave guide theory for deter-
mining the phase and amplitude of the received waves; good discus-~
sions of this theory are presented in the June, 1957 issue of the
Proceedings of the Institute of Radio Engineers. Figures 16, 17, 18,
and 19 give examples for this frequency range of the transmission loss
expected in propagation between vertical electric dipoles over land
and over sea and for day and night conditions, The values shown en
these four figures were computed by the methods described by

Wait; 28/ 27/ the minima and maxima shown are caused by inter-
ference between the ground wave and ionospheric wave modes at
distances less than about 1, 000 miles, and are caused by interference
between the several ionospheric modes at the larger distances, At
these long wavelengths the fading of the received waves is caused

by a gradual shift from midday to midnight conditions and consequently
has a very long period; thus at certain distances the received field
may remain weak throughout the day or the night. The comparison
between the calculated and observed locations and magnitudes of such
anomalies provides a useful means for determining the effective
constants of the ionosphere., The dimensionless constant L/H provides
a. measure of the effective conductivity of the ionospheric boundary,
and the values of this constant assumed in these examples were
determined by a cornparison with observations of transmission loss,

It is expected that L./H will also vary somewhat with the geomagnetic
latitude of the receiving point, but such variations are not expected

to have a large influence on the transmission loss.

It should be noted on Figs. 16 - 19 that values are shown for
the transmission loss expected at distances beyond the antipode of the
transmitter (about 12, 500 miles), and at these larger distances a
stronger signal would be expected from the shorter great circle path
corresponding to transmission in the opposite direction; when short
pulses are transmitted, these signals traveling in opposite directions 28/
will interfere with each other, and the results given on these figures
should be useful in deterimining the magnitude of this multipath
problem.
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Transmission Loss in db Expected Setween Short Vertical Electric Dipoles
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TRANSMISSION LOSS EXPECTED BETWEEN
SHORT VERTICAL ELECTRIC DIPOLE ANTENNAS

Day Over Land 0 =000477 Mhos/Meter;
lonospheric Constant L/H=0.1, h=70 km
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TRANSMISSION LOSS EXPECTED BETWEEN
SHORT VERTICAL ELECTRIC DIPOLE ANTENNAS
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TRANSMISSION L.OSS EXPECTED BETWEEN
SHORT VERTICAL ELECTRIC DIPOLE ANTENNAS

Night Over Land
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Transmission Loss in db Expected Between Short Vertical Eleciric Dipoles
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TRANSMISSION LOSS EXPECTED BETWEEN
SHORT VERTICAL ELECTRIC DIPOLE ANTENNAS

Night Over Sea O =®
lonospheric Constant L/H=0.05, h=90 km

W

7
T

@ ‘ 5: W

s
-1\’ <
N S@i‘.ﬁ
. o R
1
|
|

FERR -
[
. ) ‘\,'“.\' 9 o
W R \;\ ‘/}:" “-;¢
T TR
601~ D
- i ;\\

101 !

80

_ LT
%0 al T
L SNER

' : ! :

00 | ]

d b m

EERE e ‘I
i ) !
19 7% IOt Rt e ot e - Ja-1e

120 |-

. LU 1 HERNELEIES
150 250 400 600 1,000 2000 4000 6,000 10000 20,000 40,000 60000

Kilometers

—_—

100 20¢ 400 800 1,000 2,000 4,000 6000 10,000 20,000 40,000
Statute Miles

Fiqure 19




Wewill see in a later section how convergence at the curved sur-
face of the ionosphere is expected toaffect thetransmission loss; in
calculating the losses shown on Figs.16-19, allowance was made onlyfor
the convergence expected in the vertical plane and on the assumptionthat
the ionosphere is smooth. Allowance for convergence in the horizontal
plane leads tolarge additional reductions in the transmission loss expected
near the antipode~12, 441 miles~and near 24,881 miles and 37,322 miles.
For a smooth, spherical ionosphere, we should subtractthe horizontal
plane convergence Gy = 10 loglo[d(miles)/3960 sin {d{miles)/3960}] from
the transmission losses shown; at distances, p, from the antipodal
points less than 100 miles but greater than 0.1\, we may write
Cyp = 40.948 -10logyg p(miles); the value right at the antipodal points is
given by Cp = 34,210+ 10 log;fy, but this latter includes both long and
short great circle path energy.

The available experimental data indicate that the parametersof
the ionosphere chosenfor these calculationslead toabout the right conclu-
sions over the range of frequencies from 10 to 20 kc, but at 8 kc the
calculated losses are somewhat greater than those observed.

Finally, it should be noted that mixtures of day and night and
land and sea conditions are to be expccted over cthese long paths, and
suitable methods of calculation have yet to be developed for suchmixed
paths. It will likely be possible, however, to develop empiricalmethods
for combining the results given here to obtain good estimates of the
transmission loss expected on such mixed paths inmuch the same manner
as has been used for estimating the transmission loss expected in ground
wave propagation over mixed paths.__/ 39/

4.2 Low and Medium Frequency Ionospheric Propagation

As we increase the radio frequency well above 30 ke, the iono-
sphere behaves much less as a sharp boundary and instead gradually
refracts the waves back to the receiving point only after they have pene-
trated many kilometers into it, this penetration being greater the higher
the radio frequency. The available evidence appears to indicate that the
D and E regions of the ionosphere, which extend from 70 to 110 km, are
turbulent, consisting of "blobs" of ionization which drift with the mean
wind with velocities often in excess of 100 miles per hour. Aninteresting
discussion of these 3}f/regular ionosphericmotions is given in a recent
article by Gautier. 22/ The radio waves will travel along many different
paths through this turbulent ionized medium, the received field being the
resultant vector sum of the waves reccived after propagation along these
different paths. At sufficiently high frequencies, the relative phases of
these waves will be random, and the resultant received field will have
a2 Rayleigh distributed amplitude as shown on Fig. 5; on this figure
K represents the ratio in decibels between the field intensity of the
random ionospheric waves and a steady ground wave or, in the case
of a single ionospheric mode, K represents the ratio in decibels
between the field intensity of the random ionosplieric waves and the
steady, specularly-rcflected component. Thus it becomes convenient,
particularly for frequencies above 30 ke, to detecrmine the transmission
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loss separately for the ionospheric and ground wave modes of propa-
gation. TFigs. 20 and 21 show the transmission loss expected at 100 kc
between short vertical electric dipole antennas for the ground wave
and several ionospheric wave modes of propagation over land and
over the sea, and for .lay an.) night conditfions. The method of
calculation used in determining the results shown on Figs. 20 and 21
involves a combination of ray and wave theory., Fig. 22 illustrates
the geometry of our model and some of the assumptions made in the
calculations. The waves are refracted in the troposphere down
towards the earth and, as a consequence, thc distance, dl’ traveled
for a given ray angle of elevation, ¢, before the waves arrive back
at the earth is substantially larger than if there were no atmosphere.

We have idealized our problem by assuming for all points
along the path that the ionosphere has the same height, h, and the
same reflection coefficient, while the ground is assumed to have the
samc electirical constants even for propagation all the way to the
antipode at a distance of about 12, 500 miles, The actual ionosphere
and ground reflection conditions over particular propagation paths
are obviously much different from these idealized paths, but our
present model seems bhetter for expository purposes. The principle
of stationary phase (essentially the same as Fermat's principle) leads
to the conclusion that the received waves may be considered to travel.
along several discrete ray paths between the transmitter and the
receiver. All of thesec paths are great circle paths, the shortest
corresponding to the ground wave mode of propagation. The other
paths involve m reflections at the ionosphere, and the waves propagated
along thesc other paths arrive at the receiving point at successively
later times, By transmitting short pulses, it is possible to observe
these several modes independently at a distant receiving point, and
in this way their physical reality has been verified. The term
"mode of propagation™ here, and in thc remaindcr of the ionospheric
propagation discussions, rcfers to the waves propagated along one of
these ray paths, and has a distinctly different meaning from the usage
in the previous section where the modes of propagation were the
wave guide modes which are simply the successive terms in a mathe-
matical expression for the field. The use of short pulses to make
possible the separate reception of cach of these modes is a very
useful device for radio navigation and, in this connection, the estima-
tion of the time of arrival of the successive modes becomes of great
practical importance. These time delays have been studied both
theoretically 32/ 33/ 34/ 4ng experimentally 35 36/ 37/ 38/ and the
reader is referred to the references for information of this kind; here
we will be primarily interested only in their transmission losses.
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MEDIAN TRANSMISSION LOSS OVER LAND AT 100ke
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EN SHORT VERTICAL ELECTRIC DIPOLES

MEDIAN TRANSMISSION LOSS EXPECTED BETW
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Case (a) ¢ Positive and m=3

dr
dy

Case (b) ¢ Negative and m=2; k=1~

Figure 22




3

Consider the phase of a radio wave for a given ray path,
M) = 2vR /N, where \ is the wavelength and R is the total length of
the ray path between the transmitter and the receiver. Now consider
the variation of this phase for all possible adjacent paths between the
transmitter and the receiver as we vary the angle of elevation, ,
and azimuth, ¥; it should be clear (a) that Q) willi be a minimum with
respect to variations in x for the set of rays lying in the great circle
plane, i.e., for x = 0 and (b), of this set there will be m + 1 points of
stationary phase, Q'({) = 0, for the ray representing the ground wave
and for the m rays reflected at the ionosphere in such a way that the
angle of incidence, ¢, at the ionosphere (for example, at b, d, and £
on Fig. 22) is equal to the angle of reflection, and also (for m > 1)
that the angle of incidence, (90° -~ {), at the ground {for example, at
a, c, e, and g on Fig. 22) is equal to the angle of reflection at the
ground, When the angle of elevation, Y, is positive, the waves may
be considered to travel both along the direct ray path, tb, from the
transmitter to the ionosphere and along the ground-reflected ray path,
tab; the reflection points b and f at the ionosphere and ¢ and ¢ at the
ground will be very slightly different for the direct and ground-reflected
ray paths, but this small difference is ignored in our calculations. Note

that the angle of elevation, {, can be negative as is illustrated on
Fig. 22, case (b).

The following formula may be used to calculate the median transmis-
sion loss of an ionospheric mode of propagation involving m reflections
at the ionosphere and a ray path of length, R:

Lm = Lbf(R) + At(lIJ) + Ar(tIJ) + (m ~ 1) Ag(tb) - Cm(R,O.S) +P +mA(4,0.5)
(9
Each of the terms in the above is expressed in decibels; L f(R)

denotes the basic free space transmission loss {Set d = R in (3) in
Section 1} for the ray distance, R. We sce by Fig, 22 that we may
calculate R as follows:

R =d +d_+2mR_ W > 0)

(10)
R ”:’dt+dr+2m (Rom-kallJ) (b = 0) (11)
dt = »\/(ka tan ¢)2+2kaht-katan¢ (12)
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The distance, dr’ is deterrnined by a formula similar to (12) with ht
replaced by hr; in this equation ka is the effective earth's radius,
and k has been chosen equal to 4/3 in our ionospheric examples.
Methods for estimating k as a function of time and geographical
location are given in a later section. It is convenient to choose
several values of { at conveniently spaced intervals and then to cal-
culate all of the remaining factors at these particular values of U,

The spacc wave radiation factors, At(tb‘,, and\Ar(\L) include the
gains of the transmitting and receiving antennas, respectively,
relative to that of an isotropic antenna in frce space, and allow for
the radiation patterns of the antennas and the loss arising {rom the
proximity of the antennas to the curved earth. The magnitude of
At(LIJ) can be determined from A (L,b) = L (tlJ) - L (R +d ), where

L. () denotes the transmission ].OSb ucpu.tcd for the grround wave mode
1

propagated between the actual transmitting antenna and an isotropic
- receiving antenna placed at the first point of reflection in the
}f(R +d ) is the corresponding basic free space

transmission loss at this dlStElTlCL’. Figs. 23 and 24 give typical
values of A (V) expected for short vertical electric dipoles 30 feet
above the ground; in this case we may express At(Lb) as follows:

ionosphere, while L

A (§) =201log, . |F|-1.761 - 20 log, 4 cos ¢ - 20 log, f(q) (13)

In the above IFI is a "cut-baclk" factor. When ¢ is large and positive,
|F| is just [1 + R (LIJ)| where R is the complex Fresnel reflection
coefficient for dlane verticallyvpolarized waves incident on the ground
at the grazing angle.y; when ¥ is small or negative, the curvature of

" the earth becomes important and the values of |F| have then been
determined by formulas recently developed by Wait. 39/ 29/ The term
1. 761 is just the gain of the short dipole; the term 20 1og1 cos
allows for the cosine pattern of the dipole; and finally f(q) is the
height gain factor given by equation (19) in reference (11) which allows
for the cffect of the height, h, of the antenna above the surface. The
"cut-back" factor [Fl was calculated for a spherical surface of radius,
a =ka, with k = 4/3; this provides approximately for the effect of

e
air refraction,

The factor (m - 1)A (U} allows for loss on reflection at the
ground, for example at ¢ and e on Fig. 22 in Case (a) and at ¢ in
Case (b). The amount of this loss will depend on the polarization of
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Radiation Loss, Ay, in db Relgtive to that of an Isctropic Antenna in Free Space
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EFFECTIVE SPACE WAVE RADIATION AT A LARGE DISTANCE FROM
A SHORT VERTICAL DIPOLE 3C FEET ABOVE A SPHERICAL EARTH

Earth's radwus 4/3 actual value to allow for the bending near the surface in
a standard atmosphere; ground f*om*oms o '=0005 mhos/meter, €=I5
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Raciation Loss, Ay, indb Relative fo that of an Isotropic Antenna in Free Space
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EFFECTIVE SPACE WAVE RADIATION AT A LARGE DISTANCE FROM
A SHORT VERTICAL DIPOLE 30 FEET ABOVE A SPHERICAL EARTH
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the downcoming waves, Since the waves reflected from the ionosphere
will have both vertically and horizontally polarized components, even
when the incident waves are linearly polarized, it becomes necessary
to know the relative amounts of energy associated with each polariza-
tion in the downcoming waves. This problem is not easy to solve
precisely, and we have obtained an estimate for A () by assuming,

quite arbitrarily, that the encrgy in the downcoming waves is equally

divided between the two polarizations. Thus, for angles ¢ > 2°, we
have:

2 2
Ag(qJ) > - 10 log,, [(IR] | + [R, /2] $>2° (14)

where R and Rh are the complex Fresnel reflection coefficients for
v

vertical and horizontal pclarization, respectively. Since the value

determined by (14) represents only a few decibels, the use of the

above approximate expression will not lead to serious errors.

1t has been shown by Rice X and by Fock *2/ that A (0)=6.021db
when y equals zero (in the limit as R m/x is very large, i.e., for

h > (S/flz\/{ 3 ) kilometers) regardless of the polarization or ground
constants; their results can also be used to compute A_ (V) for other
values of ), but we have instead assumed that A_{J) can be calculated
for ¢ = 0 by the following approximate formula;

A9) = 6,021 - 24 (0) + 2A () (b < 0) (15)

For values of ¢ between 0 and 2°, it is easy to sketch in a smooth
curve between the results given by {14) and (15).

We turn next to a consideration of the convergence factor
Cm(R, p) whi_h provides a measure of the focusing of the encrgy on

reflection at the curved surface of the ionosphere exceeded with
probability p. Fig. 25 is a geometrical construction which demonstrates
the nature of this focusing of rays in the vertical plane for y near zero.
At the antipode of the transmitter, half way around the earth, the rays
are also focused in the horizontal plane. A detailed discussion of this
phenomenon is given in Appendix I. For rays leaving the earth's surface
at grazing incidence {{ < 0) and at the antipode (m 0 = 90°), it is
necessary to usc a wave treatment of the problem, the amount of the

focusing then being a function of the frequency. At points subotantially

removed from these caustics, geometrical optics leads to the following
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formula for Cm(R) which provides for a smooth ionosphere a measure

in decibels of the expected increase in the received field due to this
focusing.

. R'o (Zm RO cosy
=101 = o —
C_(R)=101og jc =10 1°g10{ T sin § (d6/dP) }V Lasin2m?0 }1.
(16)
de sin (0 - 1) dr
dd = cos $ cos * day ()

In the above T denotes the total bending of a radio wave in passing
through the troposphere, and methods of calculating v arc given in a
later section, The two factors in {16) correspond to the focusing in
the vertical and horizontal planes, respectively. Equation (16) may

be used except near the caustics (b < 0) and (m 0= 90%), When § =0
and m 3 # 90°, we may use:

= [ - 2. 16 7Y 5y
C_(R) = 20 log [R - 92.153 ¢ (degrees)]+(10/3)log ([
- 10 logm[sul 2m (Qm -4/3 )]+ (40/3)10glom -60.694 (18)

When ¢ > 0 and we are at a distance in wavelengths (p/\) from the
antipode, we may use:

. 2
cos \(
=2 b 14 O U S S — - IL
C (p) 0 10g10(Ra/rrd) +10 10510{ ~oin & (d0/d0 10 log,, m

. 2 )
+10 loglofkC + 10 loglo[Jo(Zﬂ cos P p/N)Y]T+ 36,172 (b > 0)

(19)

The above may be used for m =9 at night since y is greater than zero
for these modes with h = 90 knmiv. Form =< 8, y <0 near the antipode
at night, and we may then use the following formula:

Cm(p) = 20 10g10 (Ra/-rra) -{20/3) 1og10m + (40/3)10g10fkc

+10 log  [J_ 2npm) + 44422 W = 0)

(20)
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In (19) and (20), Ra denotes the ray distance to the antipode. If a
horizontal magnetic dipole is used for recepticn of the field radiated
from the vertical electric dipole, then the Jo in (19) and (20) is to be
replaced by Jy; here J, and Jj are Bessel functions. Very near Y =0,
the values of Cm(R) determined by (16) will exceed those given by (18),
particularly at the lower frequencies, and in this region a smooth
curve may be drawn between the values for ¢ > > 0 and the values
given by (18); similarly, at the antipode the values of C, (p) given by
(19) will exceed those given by (20), and a smooth curve may be drawn
between the values for ¢ > > 0 and those given by (20). Fig. 26 gives
examples of C, (R) calculated in this way for m =1, 2 and 9 for day~-

time propagation (h = 70 km), for a smooth ionosphere, and typical
refraction conditions.

It is clear from Fig. 25 that this focusing will be fully realized
in practice only to the extent that the ionosphere presents a smooth
surface to the radio waves. A discussion is presented in Appendix I
which indicates how allowance may be made for ionospheric roughness,
It is shown that an individual ionospheric mode of propagation consists
of a steady specularly-reflected component plus a random Ravyleigh
distributed component. If we let k% denote the ratio of the power in
the random component relative to that in the specularly-reflected
component, then we may estimate the convergence Cm(R, p) exceeded

100 p% of the time in terms of the values of k2(1 - p) exceeded 100(1 - p}%
of the time:

fcmﬂczu—p) :

Cm(R, p) =10 ]OgIO {21}

! 2
L1+ (-p) A
Here o (see 16) denotes the ratio of the received power with and

without focusing at a smooth ionosphere. As the probability varies

from 0 to 1, kz(l - p) will vary fromr zero for a smooth ionosphere to

o for a perfectly rough ionosphere, and C(Rs p) will vary from the
values given by (16), (18), (19), and (20) for a smooth ionosphere to
zero for a perfectly rough ionosphere. The transmission losses given
in this report correspond to median values, i,e., p = 0.5. The random

variable k& depends upon the radio frequency, angle of incidence, ¢,
and time of day,

As an illustration of the effects of focusing near the antipode
and of the influence of ionospheric roughness, Fig. 27 shows the
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TRANSMISSION LOSS IN DECIBELS EXFPECTED

EN SHORT VERTICAL ELECTRIC DIPOLES

BETWE

TRANSMISSION LOSS EXPECTED NEAR THE ANTIPODE
AT NIGHT FOR 100 kc

Over Land = o =0005 Mhos/meter, e =15

He

150

130

210

~y
~>

230

240

e
250 €
8,000

T T T
An:pode
e "] ——-——— Smgoth lonospbere; Ein=0

: l ————— Medan Rough lonosphere; p=0.5 -

. z
~~~~~~~ Perfectty Rough longsphere; kK'{C)= @

Focusing Very Neor the Antipode

N .

<12 NN itustroted on Figures 28 and 29
N

o000 10000 1000 12000 13000 1000 15000 16000 17005 18000

DISTANCE, d, IN STATUIE MILES

Tigure 27




transmission loss expected between vertical electric dipoles in the
range from 8, 000 to 18, 000 miles for 100 ke at night over land, Three
values are shown for each of the modes m = 6, 8, 10, 12, 14, and 16
corresponding {(a) to a smooth ionosphere {p = 0, kz'(l) = 0), (b) to an
ionosphere of median roughness (p = 0.5), and (c) to a perfectly rough
ionosphere (p = 1, kZ(O) = ).

In the immediate vicinity of the antipode, i.e., within a few
wavelengths, the focusing for a smooth concentric ionosphere is
very large. Thus Fig. 28 shows the valuc of Cm(Ra, p) expccted
right at the antipode at night for a smooth, concentric ionosphere
and for a rough, concentric ionosphere; the values cxpcectedi for
h = 70 km during the daytime would be only slightly different; Fig. 29
shows the rapid decrease of the focusing as we leave the antipode
and, at distances greater than 100\, the envelope will be just 6 db above
the values of transmission loss shown on Fig, 27, i.e.,, the values
shown on Fig. 27 correspond to the single wave expected from a
directive transmitting antenna with an infinite front-to-back ratio.

We see on Fig., 29 that the field cxpected from the non-directive
dipole oscillates with incrcasing distance from the antipode; this
oscillation is caused by the interference between the waves arriving
at the receiving point along the short and long great circle paths.
Thus there will be concentric rings around the antipode at which the
expected field will be equal to zero. The radii of these concentric
rings are the same for a concentric ionosphere, regardless of the
number, m, of ionospheric reflections, and are determined by the
zeros of the Beassel functions; for the clectric field, the first two
such rings have radii equal to 0, 38\ and 0,83\,

The actual ionosphere will never be concentric with the

surface of the earth. In practice, as the sun rises and sets, or as

the geomagnetic latitude of the reflection point is varied, the surface
of the ionosphere will undoubtedly change in such a way that its
radius of curvaturc and slope relative to a tangent plane on the earth
will vary over appreciable ranges, and this will cause C,,(R) to vary
up and down relative to the values expected on the basis of the above
analysis, However, except ncar the antipode, it seems plausible to
assume that the median values of C_(R) may not be much influenced
by such changes. The magnitude of the antipodal anomaly will be
substantially reduced by these macroscopic perturbations of the
spherical concentric shell model assumed for our calculations., Also,
for the actual non-concentric ionosphere, the geographical location

of the antipode may be expected to vary with time over a fairly large
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THE BEHAVIOR NEAR THE ANTIPODE OF THE
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area, and this should result in a net increase in the fading range in
this region. Furthermore, the antipodal locations may be expected
at any given time to be different for the different modes, and thus
the zeros predicted by (19) and {(20) and shown on Fig. 29 are not
likely to be observable unless some means is used to exploit the dif-
ferent times of arrival of the individual modes.

Consider next the loss, P, arising from the polarization
characteristics of the downcoming ionospheric waves. An incident
linearly-polarized wave will be reflected as two component waves,
an ordinary and an extraordinary wave, each of which will be ellipti-
cally polarized. These two component waves, which will have roughly
the same amplitudes except on frequencies near the gyrofrequency
{near 1. 5 Mc in the United States) will mutually interfere, and this
causes the rapidly varying polarization characteristics of the observed
downcoming waves, The polarization loss, P, arises from the fact
that typical receiving antennas will respond to only one polarization,
The amount of this loss will depend principally upon the transmission
frequency, the penetration {requency for the layer inveclved, and the
intensity and direction of the earth's magnetic field relative to the

path; it can be calculated 13/ 34 33/ with some accuracy when these

parameters are known, For more than one reflection at the ionospherc,

the polarization loss becomes a very complex function of the reflection
coefficients for the parallel and perpendicular components of the
incident fields and is difficult to separate from the absorption loss,
A(d, 1 - p). All of the low frequency exarmmples of lonospheric wave
propagation in this report have been obtained using the empirical
estimates described below for P + A(d, 1 - p) which thus includes the
polarization loss P; consequently we have calculated the total reflection
loss as m{P + A(d, 1 -p)} - (m - )P for m > 1. The calculations at

f = 100 ke have been made in this report by setting P = 3,01 db, but
this estirmate is now believed to be substantially too large, except near
vertical incidence. The calculations for all of the other frequencies
from 20 ke to 1, 000 kc were calculated with P = O for all values of m,
although this assumption probably leads to somewhat more transmis-
sion loss than would be expccted for m > 1 since the appropriate value
of P probably lics between 0 and 3 db, approaching the latter value
near vertical incidence; however, we are usually more interested in
the values near oblique incidence for our applications, and this latter

assumption should yield more nearly correct results for the solution
of these problems,

¥inally we will consider the loss, A(d, 1 ~ p), on reflection
at the ionosphere, exceeded for 100(1 - p)% of the time; this depends
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MEDIAN TRANSMISSION LOSS OVER LAND IN THE DAY
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on the angle of incidence, ¢, at the ionosphere, the radic frequency,
time of day, scason of the year, phase of the sunspot cycle and the
geomagnetic latitude of the reflection point. For the examples
developed in this report, we have used some empirical evaluations

of P + A(d, 1 - p) made by Belrose 45/ on transmission paths between
stations in England, the Scandinavian countries, and Germany.

Using the results in his doctoral thesis, we may express the median
values of P + A(4, O, 5) as follows:

; = - 12. < < 22
P+ A(d, 0.5)=17.2 loglo (fkc cos ¢) - 12.4 (70 fkc fD) (22)
{MIGHT)
= 3 . C - 2. < <
P+ A(d, 0.5) 0.8 1og10 (fkc os ¢) - 22.6 (70 fkc fD) (23)
(FEB., NOON, SUNSPOT MINIMUM)
i = d) - 22, <
P + A{¢, 0.5) = 33.6 1og10 (fkc cos &) - 22,6 (70 < fkc fD) (24)
(FER., NOON, SUNSPOT MAXIMUM)
+ R = 77. - . < <
P+ A{d, 0.5)= 77.3 1og10 (fkc cos ¢) - 64.0 {70 fkc: fD) (25)

(AUG., NOON)

The above formulas were determined cmpirically from data extending
only over the range of frequencies from 70 ~ 250 ke and the range of
distances from 350 to 900 miles; a recent analysis of lower frequency
data by Watt, Maxwecll and Whelan 46/ indicates that the absorption

is greater at frequencics less than 70 ke than would be predicted by
the above formulas, Conscquently, as shown on Fig. 30, we

have used the theoretical results of Wait and Murphy 34/ at 20 kc and
then interpolated linearly on a logarithmic frequency scale to obtain
values for intermediate frequencies; the same ionospheric parameters
L/H = 0.1byday (i.e., w/w_ = 0.467) and L./H = 0,05 at night (i.e.,
wj/w_ = 0.3002) were used in these calculations at f = 20 ke as for
those leading to Figs. 16 to 19, but the index T for the earth's
magnetic ficld was set cqual to 60° in the present calculations,

whereas v was set equal to zero in the calculations leading to
Figs. 16 to 19,

Figs. 31 to 36 give the median transmission logs expected
in accordance with the above methods of calculation at 20, 50, and

200 kc in over-land and over-sea propagation and for day and night
conditions.
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Figs. 31 and 32 show the large decrease in the transmission
loss near the antipode, and illustrate the fact that each mode of
propagation has two important branches at points somewhat removed
from the antipode, corresponding to propagation via the short and long
great circle paths, respectively; actually there are still other branches
for each mode corresponding to propagation more than once around the
earth, but these are not shown. The decrease in transmission loss
shown at the antipode is the value for an idealized concentric iono-
sphere and will, in practice, undoubtedly be somewhat smaller.
Transmission loss curves for the separate modes are not given at
20 kc for sea water since they differ so little from those for over-
land. It should be noted that the curves on Figs, 16 and 17 for 20 kc
will be more useful for most applications than those on Fig. 31 since
they combine the separate modes with proper relative phases.

Throughout this section the formulas and graphs refer to the
median values of transmission loss for individual modes of propaga-
tion., This form of presentation was used since it is more useful in
applications such as the design of navigation systems or of systems
to avoid multipath distortion. To determine the expected median
transmission loss for a continuous wave transmission, it is necessary
to convert the transmission losses for the individual modes to power
ratios, and then add these power ratios; at 500 k¢, and possibly even
as low as 50 kc, it is reasonable to assume that the several ionospheric
meodes will have random relative phascs so that the median powecr of
the resultant will be equal to the sum of the median powers of the
individual modes. For example, if there were two modes with equal
median transmission losses, the median transmission loss for the sum
of these two modes would be 3 db less, and for three equal modes the

sum would have 4,77 db less transmission loss than each individual
mode.

The author has studied the behavior of P + A( ¢, 0,5) at night
in the United States for frequencies in the standard broadcast band
from 500 to 1, 500 kc over a very wide range of distances, and has
found the following scmi-empirical formula:

Z‘ . .
P+ A(d, 0.5) = 6 cos ¢

0.
(fmC cos ¢)

” (26)

(NIGHT)
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Note that {(22) indicates an increasing loss with increasing frequency,
presumably because of a deepcr penetration of the D layer as the
frequency is increased, while (26) indicates that the loss decreases
with increasing frequency. At the higher frequencies where (26) was
established, ihe waves penetrated the D layer and, as shown by
Martyn 47/ this behavior of P + (o, 0.5) with frequency and angle of
incidence is to be expected. By virtue of the method used for its
determination, (26) inciudes the polarization loss P; since the extra-
ordinary waves are much weaker than the ordinary waves in this
frequency range

2,
rceflection frera the ionosphere, With the above discussion in mind,

there will be additional polarization loss at each
it seems appropriate to assume that the penetration frequency of the
D layer at night is effectively defined by the following relation:

P+ A, 0.5) = P + Ao, 0.5) (27)

(26) (22}

(At the D layer penctration frequency, f,), at night)
I

As determined in this way, the D layer penetration frequency at night
varies from about 500 kc at vertical incidence to about 250 ke with

cos ¢ = 0.164, the minimum valuc cxpected for a 90 km layer height;
the anomalous behavior of this penetration frequency suggests that
neither of our empirical absorption formulas are very dependable in
this intermediate range of frequencies. Since nothing better is readily
available, it was decided to calculate the transmission loss at night at
frequencies greater than the above-defined D layer penetration fre-
quency by using m 26 cos (ﬁv/(fM cos o) 0.4 55 the total loss on
reflection; the reflection height Cwas assumed to be 110 km at night, but
the value of cos ¢ to be used in the absorption equation was determined
on the assumption that the absorption takes place at a height of 100 km.

Figs. 37 to 40 give the median transmission loss expected
between short vertical electric dipoles at 500 ke and at 1, 000 kc in
over-land and over-sea propagation and for day and night conditions,
The absorption at night was determined by (26) as described above,
but, in the daytime, (24) and (25) were used since radio waves in
this frequency range are then presumably reflected and absorbed by
the D layer at an assumed height of 70 km.

At still higher frequencies during the davtime, the radio waves
will penetrate the D layer and be reflected by the E layer at a height
of about 110 km. The ionospheric absorption is so great during the
daytime in the range of frequencies from, say 500 kc to 4 Mc, and
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the reflection phenomena so complex, with reflections taking place
sometimes at the D layer, someciimes at the E layer and sometimes
at the F laver, that useful, simple absorption formulas are not
available. For this reason the calculations of transmission loss
given in this report for this range of frequencies have been made by
extrapolating (23), (24) and (25) to higher frequencies, and by extra-
polating to lower frequencies the absorption formulas applicable to
the high frequency band as discussed in the next section.

Figs. 41 to 45 give transmission losses for propagation over
land, based on the above-described methods of computation and on the
methods described in following sections, and are desigrnied to show more
clearly the effect of radio frequency for day and night, for two scasan:
and for minimum and maximum sunspot conditions. Only cone set of
curves are prescnted for propagation at night since the scasonal and
sunspot cycle effects on the transmission loss are comparatively small
at night. The curves on these figures give the transmission leoss
expected between short clectric dipole antennas, oriented vertically at
frequencies less than 5 Mc and horizontally for frequencies greater
than 5 Mc, for the ground wave and for the particular sky wave mode
with a minimum transmission loss at the distances 200, 500, 1, 000,
2,000, 5,000 and 10, 000 miles., At each distance we have shown only
the value expected for ihe single sky wave mode with the minimum
transmission loss; with continuous wave transmission, the losses would
be several db less than thesc values, particularly at the larger distances
where several sky wave modes with comparable intensities are expected.
Note that ground proximity losses L. and L, as discussed in Appen-
dix III, have becn omitted in L‘ah‘u]a'tjing the values shown on Figs. 41
to 45.
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MEDIAN TRANSMISSION LOSS FOR NOON AT THE RECEIVING ANTENNA
February ; Sunspot Minimum; 0 =0.005 Mhos/meter; €=15; hy=h,=30 feet
West to East Transmission Path with Washington, D.C. of the Midpoint
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4.3 High Frequency Ionospheric Propagation

We see on Figs. 41 to 45 that the variation of transmission
loss with frequency changes as the various layers of the ionosphere
are penetrated. The method of determining the D layer penetration
frequency was described in the preceding scction, and the penetration
frequencies for the higher layers were determined by the methods
described in references 24 and 25; for this purposc the propagation
path was assumed to be from West to East with its midpoint at

Washington, D.C., and with either noon or midnight at the eastern
end of the path,

During the daytirne the polarization and absorption losses in
the high frequency band have been calculated by the methods described
in a Signal Corps report. 48/ Thus the constant attenuation of 8,9 db
found in their analysis has been somcwhat arbitrarily attributed to a
polarization loss P, and the following semi-empirical formula used
for calculating the daytime absor, tion:

1.3
. 615. 5 {cos (0. 881 ¥ ' 1+ G.0037 =
Ald, 0.5) - leos X’} o L (pav) (28)
(f + YT coe b
‘"Mc 117 :

In this formula y denotes the zenith angle of the sun at the reflection
point, and s denotes the smoothed Zurich sunspot number; for sunspot
minimum, s was set equal to 10, and for sunspot maximum, s was

set equal to 150. The gyrofrequency, fH = 1.5 Mc, on the average in
the United States. The angle of incidence, &, to be used in (28) refers
to the valuc this angle will have at the absorption level, and this angle
will be systcmatically larger, for a given angle of elevation , than
the angles of incidence at the higher layers where the reflections take
place. The Signal Corps analysis was bascd on the assumption that
the absorption takes place at a height of 100 km and this same height
was used in our calculations. In the Signal Corps repori, convenient
graphical methods are given for determining many of the factors
involved in calculating (28). Prof. A, Kazantsev 49/ 50/ has proposcd
a method for calculating A(d, 0.5) which, in essence, involves the
replacement of the numerator of (28) by a constant times the square
of the penetration frequency of the E layer at vertical incidence; this
method appcars to have cunsiderable merit, but a2 critical determina-

tion of its accuracy compared to that of the Signal Corps method has
not yet been published.

70




Thus, during the daytime we have used (9) for calculating the
median transmission loss in the high frequency band with P = 8.9 db
and A(¢, 0.5) determined by (28). Note that the focusing is probably
negligible in this frequency range since the ionosphere will very likely
appear rough to these radio waves most of the time; in the absence
of quantitative information on ionospheric roughness at these higher
frequencies, we have arbitrarily set C (R, 0.5) = 0 at all distances
for f = 2 Mc both day and night.

At night the absorption in the high frequency band is quite
small; it has been estimated in this report by means of {(26). We have
already noted, however, that {(20) includes a polarization loss, P, and
the Signal Corps report indicates, in effect, that the absorption plus
the polarization loss at night is equal to 8.9 db; thus it appears to be
appropriate to use (9) for calculating the transmission loss with
P + A(4, 0. 5) calculated by (26) for the lower frequencies where
m{P + A(¢, 0.5)} > 8.9 db and to set m{P + A(d, 0.5)} = 8.9 db for

all higher frequencies. This is the method used for the examples
presented in this report.

4.4 Ionospheric Scatter Propagation

At irequencies abovc the penetration frequency of the E layer,
the radio waves are scattered forward with sufficient intensity to be
usable for communications over distances of the order of 600 to
1,400 miles. 5l 52/ 53/ The transmission losses shown on Figs. 41 io
45 for this mode of propagation are based on the measurements
reported by Bailey, Bateman and Kirby Y 5 for the Fargo, North Dakota
to Churchill, Manitoba path as extrapolated to other distances and
frequencies by means of a theory developed by Wheelon. 54/ 55/ 56/
Thus Wheelon attributes the scattering to turbulence in the D and E
regions of the ionosphere and, on the assumptions (1) that the spectrum
of this turbulence may be determined by the mixing in gradient
hypothesis and (2) that the viscosity cut-off has a characteristic scale

1' = 1.5 meiers, ir chle to develop a formula for the transmission
18ss expected with this mode of propagation,

Wheelon's analysis leads directly to the spectrum of the
turbulence, but the turbulence may also be characterized in the range
of wave numbers smaller than the viscosity cut-off by the correlation
function (r/!o) Kl(rllo) which describes the degree of correlation in

the fluctuations in electron density at points a distance r apart; Kl
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denotes the modified Bessel function of the second kind and 20 is a
characteristic scale of the turbulence, set equal to 100 meters in our
subsequent analysis. It is interesting to note that this same correla-

tion function is applicable for describing tropospheric turbulence as

well, 57/ 58/

The following formula gives the median transmission loss
expected for the ionospheric scatter mode of propagation, i,e., on

frequencies above the effective maximum usable {requency, fMUF’ of
the scattering region:

= 1) - -
Lms Lbf(R) + At(\IJ) + Ar(l'.t) S5(0.5) - 10 1og10 sec ¢

v

2 .
+B(k", 2, 2) + P +A(e, 0.5) (frre = Iy (29)

In the above, Lbf(R) denotes the free space transmission loss for waves
traveling a distance corresponding to an average scatter path of

length R; this path length has been determined in this repori un the
assumption that the mean layer height h = 87 km both day and night,
For horizontally polarized waves the following formula may be used to

estimate the median value for the sum of the space wave radiation
factors:

AMY) +A_(B) = - 20 log 2 sin (27 h sin 4 /\)]

g0 [2 sin(2w hr sin $/N)] - G (0.5) {Horizontal polarization)
P

(30)
In the above, h, and h  denote the heights of the transmitting and
receiving antennas abdve the local terrain, and G (0. 5) denotes the
median path antenna gain,

For the high gain antennas normally used
for communication by scatter, there will usually be a substantial
"loss in gain" relative to the value G would be expected to have for
communication between similar antexlmjnas in free space. For example,

on the Fargo to Churchill path, G as determined for successive half-

hour periods of time, was found to be a random approximately normally i
distributed variable with a median value G (0. 5) = 25. 7 db and a standard

deviation of 5,85 db; the sum of the free space gains in this case was

about 40 db. It has been found that some of this "loss in gain™ can be

recovered by directing the antenna towards the better scattering

regions. The values of transmission loss shown on Figs, 41 to 45 are



for propagation between short horizontal electric dipoles, and in
this case G_ = 3.52 db, The antenna heights, ht and h _, were taken

to be 30 fee}% except at the higher frequencies where somewhat lower

values of h, and hr were chosen so that 4 h sin Y /N = 1; this choice
of h and h effectivcly m 1n1m12,ed the loss and in this case
A NJ) + A (LL‘ = - 12.041 - . Near the maximumn effective range for

5 }
10nospherlc scatter, 53/ the transmission loss increases so rapidly

with increasing distance that it is useful in some cases to use very

large antenna heights so as to increase the range slightly by the amounts
indicated by (12},

The [actor S involves the intensity and scales of the turbulence
and, together with G , exhibits most of the variability of the fransmis-

sion loss. The medi%n value $(0. 5) undoubtedly varies somewhat

diurnally, seasonally, and with the sunspot cycle but,

since such
changes

are not large with a probable extreme range of the monthly
medians at a given time of day of less than 20 db, we have calculated
all of the examples in this report by sctting S(0. 5) = - 8.4 db, the
value obtained for the Fargo-Churchill path. An analysis is presented
in Appendix II which shows that this value of S(0. 5) is not inconsistent
with what is presently known about ionospheric turbulence.

The factor 10 log, , sec & provides a measure of the size of the
3 . Ly 3 . -
effective scattering volume for transmission paths of various lengths.,

The transmission lose factor B(k ' )2 K JZ )may be expressed:

2 2
Bk, £ 1‘) 2510g10[1+k ]+20 1og [1+(k 172)2/3]

2 2.2
+ (40/3 10g10[1+(k Fs) ] {31)

Although the characteristic scale lengths, 2 and / o are likely to be

somewhat variable diurnally and sc asnnally, we have, for the purpose
of the calculations in this report, taken them to be equal to the constant

valucs !0 = 100 meters and QS = 1.5 metcrs; kZ is defined as follows:

2 2

[9_1 1"‘1 MUFE
L M _j \\ fZ
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2
When f is equal to the maximum usable frequency, f s k =0,

the wavelength in the medium increases without lim{t, and the scatter-
ing is no longer directed forward, but occurs uniformly in all directions.
In this limiting case, B(kz, 10, !S) = 0 and {29) indicates a scatter

loss exceeding that predicted by {9) for normal E layer propagation

at the MUF by only (8.4 - 10 log1 sec ¢} decibels, For the calculations
in this report, we have somewhag arbitrarily used the median & layer
MUF as a measure of the MUF of the scattering region,

For ionospheric scatter, we have taken P = 3 db for both day
and night propagation conditions. During the day, the absorption term
A(d, 0.5} was computed by (28), but at night PP + A($, 0.5) was
determined by {26) up to frequencies for which the resulting value is

greater than 3 db, and at higher frequencies P + A{¢, 0,5) is set
equal to 3 db,

There is no present evidence for the existence of F layer
ionospheric scatter or for multi-hop E layer scatter and, for this
reason, the transmission loss curves for d = 2, 000, 5,000, and
10, 000 miles stop abruptly at the MUF; the transmission loss is

expected to increase very rapidly indeed at frequencies just above
the F layer MUF, ‘

5. The Bending of Radio Waves by the Troposphere

Since the density as weill as the absolute humiZity of the
air decrease with the height, h, above sca level,the refractive index,
n, also usually decreases with h, and this causes radio waves leaving
an antenna at a given angle, §, to hend down towards the earth, the
amount of this bending being larger, the smaller the value of Y. This
is illustrated on Fig. 46 which shows the total bending, *, of a radio

wave traveling entirely thrcugh the troposphere and subsequently being
reflected at an jonospheric layer,

Since the refractive index, n, departs from unity by only a
few parts in 107%, it is convenient to describe n in terms of the
refractivity, N, which is defined:

N={(n-1) X 10° {(33)

If the value of N were known as a function of time at every point in

the atmosphere between two radio antennas, it should be possible, in
principle, to predict the instantaneous behavior of the transmission
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loss in propagation between these antennas., Actually, of course,

this is not feasible because of the complexity of the solution of such

an electromagnetic problem. Furthermore, even if the engineer could

be provided with this instantaneous information, he would normally be
forced to describe it in some statistical terms before he could use it
effectively in the design or use of radio systems, Consequently, we
are led to the description of N in statistical terms, with the hope that
these statistical characteristics of N may be used for the prediction of
the more important statistical paramecters describing the transmission
loss. At a given instant N will vary considerably with height above the
surface, and, to a lesser extent, with distance along the path. If,
however, we average the values of N over a period of an hour, then N
will, on typical propagation paths, be more nearly constant along the
path at a given height, but will normally decrease monotonically with
increasing height above the surface. For the solution of most radio
prediction problems, it is permissible and, indeed, desirable to

average N over still longer periods of time in order to obtain mean

conditions useful in radio systems design. Thus, for predicting the

diurnal, seasonal, or geographical variations of the median transmis-
sion loss, we may further average the values of N as determined from
day to day over a period of many years for a particular hour of the
day, month of the year and geographical location. The resulting values

N will vary still less along the path and, on most paths, N, for a given
time of day and season of the year, may be taken to be a function only
of the height, h - h,, above the earth's surface where h represents the
height, expresscd in kilometers, above sea level, while hy represents

the height of the surface above sca level. There will be some paths

for which N will also vary appreciably in the horizontal plane; examples
are paths with one terminal over land and the other over the sea, and

these will undoubtedly require special treatment., Since the average

values N tend for most paths to be very nearly horizontally homogeneous,
it should only be necessary Lo know the vertical profile of N at one point
along the path for a successful prediction of the median transmission loss

at a particular time of day #nd season of the year. For very long paths

on which N does vary appreciably along the path, we may base our radio
predictions on the two N profiles at the intersections of the two radio
horizons with the great circle path,

- From the above discussion it appears to be desirable to study
these N profiles, and it will be convenient in the following analysis to
omit the superscripts and simply let N(h) denote these long-term average
values. The most generally reliable singlc parameter for the descrip-
tion of the profile as it affects radio propagation is the ditffercnce, AN,
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ia the values, Ny, at a height of one kilometer above the surface wnd
N, the value at the surface:

AN = N(hg +1) - N{hy) = Ny - N (34)

Note that AN is a negative quantity. Most of the diurnal, scasonal,

and gecographical variations in propagation between antennas:at heights
- of less than one kilometer above the surface may be predicted on the

assumption that N(h) decreascs linearly with height above the surface

up to a height of one kilomecter:

-
Z
—_
=
~—

=N + aN(h - ) [h =h=h +1] (35)
S S S S

Fer radio propagation predictions at the higher freguencies
above, say, 50 Mc, the above assumption of lincarity for the initial
decrease of N{h) with height is not adequate for some times of the
day or for some geographical locations; in sormu of these special cases
there may be ducting with a resalting substantial incrcase 59/ in the
transmission loss for paths just short of the radio horizon, and a very
large dE‘Ll‘E’abC_/ in the transmission loss on paths just beyond the
radio horizon. Since these appreciably non-linear profiles occur in
only a very small percentage of all cascs, 8Y we will not consider them
further in this survey report. Furthern pore, although the principles of

. . ¢ 4/
cuct propagation are well understocd, ()2/ 63/ 64/ thore arc neverth
no very satisfactory formulas for predicting the transmission loss for

the large variety of non-lincar profiles typically ¢cncountered in practice,

The assumption of a lincar profile makes possible the
introduction of a great simplification in radio propagation predictions.
Thus i1 has been shown E/ that the behavior of radio waves in an
atmosphere with a lincar gradient is the same as that expected with
no atmosphere for an earth with effective radius a = ka' where a!
denotes the actual earth's radius, expresscd in kilomreters, and o is
defined by:

1
- = — = — + ; {35)
a

' . 66
Bean and Meaney o8/ demonstrate that there is a high correlation
between the monthly median transmission loss and the monthly rmedian
values of AN, and give maps of the rnonthlv median values of AN for

the United States for several months of the year. The values of AN

~1
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must be determined from radio-sonde observations and are, as a
consequence, not as readily available at all hours of the day nor for

as many geographical locations as the surface values, Ng. Fortunately,
AN may be predicied 87/ with quite good accuracy from Ny and, in the

absence of observations of AN, the following empirical formula may
be used to determine the predicted value AN":

AN' = - 7.32 exp{0. 005577 N_} (37)

If now we combine {35) and {(37), we have the [vllowing expression for
the initial behavior of N(h) in what will be referred to as the CRPL
Standard Radio Refractivity Atmosphere as recently proposed and
studied by Bean and Thayex':6_7/

N(h) = N_ - {h - hs) 7.32 exp{0. 005577 N _} [hs =h=h_ +1] (38)

Note that the only parameters in (38) are the surface refractivity, N o
and the height, h,, of the surface above sea level.

Note that (37) may also be used to predict Ng in terms of known
values of AN:

N' = 412.87 log,  (-AN) - 356.93 (39)

When values of AN and of Ns arec both available, and when the actual
value of Ny differs from the valuc predicted by (39), it is better to

use N'S for predictions when ¢ < 3° rather than the actual value of N_;

in other words, AN is slightly better than Ny as a predictor of propaga-

tion conditions for small values of ¢, On the other hand, it is at
present easier and usually also more accurate to predict N for some
particular time of day, scason of the year and geographical location,
and then use (37) for determining AN’', than it is to use the available
maps 2/ directly for the prediction of AN, It should also be noted that,
even when AN is available, N_ is a betier predictor J of the bending
at high elevatlon angles; ¢ > 3°, It is cxpected that the recent study
program 68y proposed by the International Radic Consultative Com-
mittee (CCIR) will tend to expedite the gathering of the data on AN
required for the development of suitable prediction methods; however,
it is unfortunate that emphasis was given in that proposal to the
gathering of data at only two hours of the day, 0200 and 1400 U, T.,
since it is precisely the large diurnal variation of AN, occurring at
many locations, which is most difficult at present to predict with
adequate accuracy,




The cffect on Ng of the height of the surface above sca level
may be determined from the relation:

N =N exp(-c h ) (40)
s o s s

where ¢ = 0.1057 /kilometer = 0.1701/statute mile = 0. 03222 /thousand
feet. Bean and Horn 92/ give maps which may be used to estimate the
valuc of N averaged throughout the day for the months of Fehruary
and August at any geographical location in the world, together with a
map of the annual range of N;. A comprchensive climatological study
of Ng for the United States is in preparation at C. R.P. L. ; this study
will make available charts uscful for the prediction of N, (and thus

of N_ by means of (40) above) at 0200, 0800, 1400 and 2000 for
Febl?uary, May, August and November and, in addition, gives the
detailed statistical characteristics of Ng at several representative
weather stations in the United States,

Summarizing the above, we see that the average value of N
up to a height of onc kilometer above the surface may be predicted
preferably, when ¢ is small, in terms of a mcasured mcan gradient,
&N, or, alternatively and with only slightly lcss accuracy, in terms
of the mean value of the surfavc refractivity, Ng. Above one kilometer,
N decreases exponentially with height, and Bean and Thayer b7} give
the following formulas for N(h)} in this range:

N(h) = N‘1 pr[_ Ci (h - h‘; - ])J (hq +1 = h = 9 km) {41)
= —— log (N./105) (42)
RS U |
N(h) = 105 exp[- 0.1424 (h - 9)]

h = 9 km (43)

Since the constant ¢, depends only on N and h, (sce Table 5.1 below),
3 5

it appears that the mean atmosphere may be described in most cascs

in terms of these two parameters or, alternatively, in terms of h_

and Ni when AN is known., Note that by influences the description of

the atmosphere [see (42)] only in the range from one kilometer above
the surface to 9 km above seca level, and then only slightly for the
range of values of hy normally encountered in praclice; conseguently,
we may, for practical purposes, consider that the atmosphere is well
defined by the single paramecter N,. The success of this model in

79




Table 5.1
Constants for the CRPL Reference Atmospheres

hs a! a Ci
Ns feet MILES -AN' k MILES per kilometer
0 0 3960 0 1 3960, 00 0
200 10,000 3961.8939 22.3318 1.16599 4619.53 0.106211
250 5,000 3960.9470 29.5124 1.23165 4878.50 0.114559
301 1,000 3960.1894 39.2320 1,33327 5280,00 0.118710
313 700 3960,1324 41,9388 1.36479 5404.57 0.121796
350 0 3960 51.5530 1,48905 5896, 66 0.130579
400 0 3960 68.1295 1,76684 6996.67 0.143848
450 0 3960 90. 0406 2.34506 9286.44 0. 154004

predicting the bending of radio waves has been examined by Bean
and Thayer 87/ and leaves little to be desired except in the small
percentage of cascs involving non-linear profiles.

For some matlhematical aualyses of radio propagation, the
above-described CRPL Model Radio Refractivity Atmospheres™ have
the undesirable characteristic of having discontinuities in the gradient
at one kilometer above the surface and at 9 km above sea level, The
following exponential model is free of this defect and, although it does
not fit the meteorological data above oune kilometer as well as the CRPL

Model Radio Refractivity Atmospheres, it does nevertheless provide a
represcntation useful for many applications:

N(h) = N; exp[ - cc(h - hs)] (44)

The CRPI:. Model Radio Refractivity Atmospheres have arbiirary
valucs of Ns’ hs, and AN; in the CRPIL Standard Radic Refractivity
Atmospheres Ng and AN are related by (37) and (39), but hS is arbitrary;
and in the CRPL Reference Radio Refractivity Atmospheres N, &N,
and h  have the values given in Table 5.1,
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The constant ¢ is defined in terms of AN and Nb:
e N

exp(- Ce) =14 — (45)

Table 5.2 gives the values of c, for scveral values of AN for the
particular case in which Ny is determined by (39); the value N, = 313

represents the average of the observed values of N in the United
States.

Table .2

Typical Constants c. for CRPL

Standard Exponential Radio Refractivity Atmospheres

= s - C h -} 1
N(h) Ns exp| (_C( 1 is)‘

c
AN N? per kil,:)mcter

0 0 0
22,3318 200 0.118400
29.5124 250.0 0.125625
30 2562.9 0.126255
39,2320 301. 0 0.139632
4j.9388 313.0 0.143859
50 344, & 0.156805
51,5530 350.0 0.159336
60 377. 2 0.173233
68,1295 400, 0 0.186720
70 4041, 9 0.189829
90.0406 450.0 0.223256
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Fig. 47 compares the paths followed by radio rays leaving the
earth at several selecied elevation angles, b, for several of the CRPL.
reference atmospheres with the paths expected in a four -thirds ecarth
atmosphere. Thus, the graph paper used for tracing these rays was
so designed that they are straight lines for the lincar gradient atmos-
phere corresponding to an effective earth's radius of 5,280 statute
miles, i.e., (4/3)+3,960 miles. Note the very large departures at
large heights of the rays in all of these representative atmospheres
from the rays in the usually assumed four-thirds' earth atmosphere.
Note that there arc large departures from the four-thirds' earth
atmosphere at large heights for N, = 301, cven though the bending in
this atmosphere is correct for heféhts h - h less than one kilometer.
An appropriate allowance for this difference in bending is imade in the
tropospheric curves prescnted in subsequent sections of this report,
but no such allowance was inadce in preparing Figs. 3, 4 and 6, A good
estimate of the correction which should be made to the altitudes of the
contours on Figs. 3 and 4 is simply the difference in heights, at the
appropriatc range, between the 4/% earth rays and the N, atmosphere
rays. For a detailed discussion of such corrections with a%aopropriate
graphs, see a recent report by Rice, Longley and Norton, 12/

The Bean and Thayer report gives the eclevation angle error
e =y - ¢O as a function of electrical path length, R,, for rays in the
reference atmospheres as well as AR = Re - Ro'

(RI/Z)
R C ndR=ct (46)
- .- e
o

where o is the velocity of light in a vacuum and t, is the time of transit
along the ray path,

5.1 The Influence of Tropospheric Bending on
Ionospheric Propagation

The bending of the radio waves by the troposphere has the
effect of extending the range of ionospheric propagation and, although
the effect is small, it is not negligible near obliquec incidence. Table 5.3
shows the influence of Ns on Rl’ dl' and cos ¢ for ionosphere heights
h = 70, 90, 110, 225, 350, and 475 km, The calculations were made by
tracing rays in the CRPI. reference almospberes with Ny = 0, 301 and
400, Since the variations with N, are comparatively small, it would
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appcar to be reasonable for most applications to use only the single

value N_ = 301 in jonospheric calculations, and the rermaining tables in

this section give the convergence factor c¢c_ for several angles and
m P T

for m = 1to 20. The values of ¢, are given since they involve the

geometry in a rather complex way; however, since the ionospherc

probably appears rough to the radio waves reilected at the higher

layers, ¢ __ is given only for h = 70, 90, and 110 km.

m
The results presented in this section were all obtained by ray
tracing methods, and such metheds yield reliable results only when the
following two conditions are satisfied: (a) the index of refraction, n,
must not change appreciably in a distancce cqual to a wavelength, and
(b) the fractional change in the spacing between neighboring ray- in a
wavelength along thc ray must be small compared with unity., Both of
these conditions require that resort must be made to wave solutions of
the problem at the lower frequencies. Condition (b) above is always
violated at a caustic, and wec have shown in Appendix I how such cases
may be treated. It might be supposcd, since n changes only from
about 1. 0003 to 1 for a 70 km change in h, that condition (a) would be
well satisfied at frequencics even as low as & kc; however, it must be
remembered that this small change in n actually causes appreciabie
bending when ¢ is small, and we should, instead, require that
AN/N < 0.1{2%/X\) = 0.002 fk' if we are to expect ray tracing to apply.
This more stringent requirccment is met for £ > 65 ke for the Ng= 301
atmosphere, and it appears that a wave solution will be required at
lower frequencics for a precise treatment of the bending. Until an
adequate wave solution becomes available, it would seem that the ray
tracing solution here given should be used even for frequencies as low
as 10 ke since the alternate assumption of Ny = 0 would undoubtedly
vield an even poorer approximation to the actual bending. '

5,2 The Total Bending

Above a height of about 70 km, the tropesphere no longer bends
the radio waves appreciably, and the designation T has been given toc
the total bending of radio waves passing entirely through it. Table 5.5
gives v, the critical range, R _, and R_- (R, /2) as a function of { fer
the CRPL Reference Radio Refractivitf Atmospheres. The results
provide a convenient means for determining the true elevation angle‘k’,lo
and true range R_ of a satellite at very high heights, say h > 70 km™,

These results may actually be used without appreciable error when-
ever R, > 2 R..
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Table 5.5

The Total Bending, 7, Critical Range, Rc, and Re - (Rlll) for the C. R, P. L. Reference Radio Refractivity Atmouspheres

Ns =200,0 hs =10, 000" Ns =250.0 hs = 5,000" NS = 301.0 hs = 1, 000!
[ T Rc Rc- (RI/Z) T Rc R, - (Rl/Z) T RC Ra- (Rllz)
m.r, m.r. km. meters m.r. km. meters m.r. km. meters
0.0 7.1845 200, 400 2.2 Q. 4604 198,752 781 12,1522 196, 568 95.40
0.5 7.1022 199, 007 61.5 9.1356 197.274 7.1 11.9871 195, 049 94. 1
1.0 7.0211 197.632 60.8 9.8226 195.817 76.2 11.8252 193,537 32,9
2.0 6.8630 194,937 9.4 39,0025 192,966 74.3 11,5109 190. 592 90.5
3.0 6.7100 192. 309 58. 1 8. 7899 190. 195 72.5 11,2090 187,744 88,3
4.0 b, R622 189, 743 56.7 8,5848 187,498 70.8 10.9194 184,987 86,1
5.0 6.4193 187,235 55.4 8.3869 184.870 69.1 10. 6416 182,313 83,9
6.0 6.2813 184,782 54,3 8,1962 182,308 67.6 10,3754 179,117 82,0
7.0 6. 1480 182,381 53.1 8.0124 179.807 66.1 10.1202 177.190 80,0
8.0 6.0194 186.027 51.9 7.8353 177.363 64.7 9.8757 174. 770 78.1
9.0 5.895] 177.719 50.8 T.6645 174.973 63.2 9.6413 172,331 76.3
10.0 5.7151 175,454 49.8 7.4999 172,635 61.9 9.4165 169,988 T4,
12,0 5.5470 171. 046 47.8 7.1882 168, 104 59.3 8.9940 165.461 71.4
15.0 5.2326 164, 720 45,0 6, 7602 161, 641 55.7 d.,4207 153,027 £7.0
20.0 4,7721 154, 868 40,97 £1379 151, 664 50. 58 7.5798 149,131 60. 57
25.0 4.3771 147,812 37.44 5. 6080 142, 576 46,11 6,9125 140, 14) 56,19
30.0 4,.0152 157, 488 34. 54 5.1539 134,283 42, 3) 6.3292 131.954 50, 52
40.0 3.474% 122, 82) 29,49 4,41565 119, 743 36,33 5. 3943 117,660 43,17
50.0 3.0364 110, 443 25.80 3.8448 107,623 31.50 4. h808 105, 694 37.39
65.0 2.8379 95,332 21,46 3.2016 92,847 2h, 22 3.8847 91.165 31,17
80,0 2.1689 83,422 18,30 2,7295 81,232 22.29 3.3051 79.749 26, 50
100.0 1.8076 71,142 15.30 2,2702 69.270 18, 5% 2,7442 67.997 21,96
150. 0 1.2606 51,401 10,68 1,5794 50,082 13,02 1.9053 49,122 15.39
200, 0 0.9586 39.975 8,19 1.2000 38.928 9.97 1.4464 38,201 11,80
300.0 0.6379 27,600 5.5% 0.7978 26,879 6.80 0.9011 26.37% 8.03
400.0 0.4693 21,156 4.26 0, 5848 20,604 5.19 0. 7068 20,217 6,12
600, 0 0.2912 14,699 2.54 0.3641 14.316 3.59 0.4384 14,047 4,25
300.0 0,1584 10,630 2.13 0,1980 10,354 2.59 0,2384 10,158 3,06
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‘Table 5.5

The Total Bending, v, Critical Range, Rc, and Re - (Rl/Z) for the C.R.P.L. Reference Radio Refractivity Atrmospheres

N, =350.0 h_= 0 N_=400.0 h_= 0 N_=450.0 h =0 ’
¥ T R R - (R,/2) T R, R, - (R,/2) T R, R - (Rllz)
m.r m.r. km meters m.r, km meters m.r. km meters
0.0 15,6236 192, 552 111,10 20,4292 189, 878 128,70 27.5747 191,865 152.6
0.5 15.3818 190. 840 109.40 20,0507 187,842 126, 60 26,9134 189,128 149.3
1.0 15,1452 189, 165 107,80 19, 6822 186,361 i24, 30 26,2740 186, 497 146,1
2.0 14. 6878 185,921 104,80 18,9747 182,065 120,20 25,0635 181, 540 140, 2
3.0 14,2512 182,809 101.80 18, 3060 178,467 116, 40 23,9391 176.959 134,6
4.0  13.8349 179.818 99, 00 17. 6748 175,055 112,70 22,8975 172. 716 129.4
5.0 13,4383 176.939 96.3 17,0798 171,811 109.3 21,9340 168, 775 124.7
6.0 13.0605 174.163 91,8 16. 5190 168,717 106. 0 21,0429 165. 099 120,3
7.0 12,7008 171,479 91.4 15,9905 165,759 103, 0 20,2186 161, 655 116.2
8.0 12.3583 168. 881 89.1 15,4923 162,923 100, 1 19, 4552 158,414 112, 4
9.0 12,0320 166,361 86,9 16,0824 160, 199 927.2 18, 7472 185,350 108. ¢
10.0 11,7210 163.914 84.8 14. 2787 167,574 94, 6 18, 0892 152,443 105.5
12,0 L1, 1413 159,218 80,7 13,7626 152,693 89.8 16,9049 147. 026 99.3
15.0 10,3651 152. 608 5.4 12,0512 145, 688 83,13 15,3978 139, 701 91.4
20.¢ 72,2736 142, 773 67,9 11,2232 135, 398 4.3 13,4115 129,072 80.7
25.0 8.3768 133,571 61,49 10. 0480 126,324 66.93 11.8776 119,907 72,17
30,0 7.6271 125,452 56, 08 9, 0849 118, 249 60, 8C 10,6525 111,868 65,12
10,0 6. 4460 111,434 47.70 7. 6000 104, 501 51,28 8.8124 98, 183 54,48
50,0 8, 5604 0,827 1,21 6.5103 33,278 44,12 7. 1944 87. 524 46. 62
65.0 4. 5872 85,4861 34, 0% 5. 1338 79,931 36. 33 A, 0979 i, 749 38,22
80,0 3,R877 74.969 20,02 4. 5005 69,621 30,82 65,1232 64,964 32,30
100. 0 3.2172 63.814 24.05 17104 59, 134 25, 41 4, 2089 55, 077 26.79
150,90 2,2247 46,007 16,76 2, 542 42,514 17,71 2,8853 39, 506 18,50
400.0 1.6860 35, 747 12.83 1.9321 32,998 13,6 2, 1789 30,628 14,13 .
300.0 1. 1188 24,662 8,73 1,2863 22, 14% 9.21 1, 4419 21,093 9.60 :
400.0 0.8224 18.899 6. 65 0.940% 17.423 7.03 L. 0588 16,153 7.33
600, 0 0. 5099 13,125 4. 62 0. 5830 12,100 4.86 0, 6560 11,216 5,06
900.0 0.2772 9. 494 3.33 0.3169 8, 749 3,51 0.3%06 8,108 3.66



in terms of its observed elevation angle y, its observed radio range
R, and the surface value, Ng, of refractivity at the observing point:

LIJO = - T[l - (RC/Re)] (47)
1 Rc Z
RO = (R1/2) - Rc [—3- - ZRe ] sin T (48)

6. Tropospheric Scatter

The distance dL io the radio horizon of a transmitting

antenna of height, hy, above a smooth spherical earth of radius a'
and for a linear gradient atmosphere may be determined from:

a . = ~N2ka't 4
Lt 2 (49
where k is defined by (36). For the particular CRPL Reference

Ns = 301 atmosphere, ka' = 5,280 miles and, if ht is expressed in
feet and st in miles; st = N2 h:. When hy is greater than one
kilometer, (49) no longer applics, and reference should then be made
to the preceding section or to references 67 and 70; in particular,
since the horizon is defined by the ray corresponding to b = 0, Fig, 47
shows the relation over a smooth earth betwcen dy ¢ and h at large

heights and for scveral values of Ng. If we let hr and (]Lr denote the

height and distance to the radio horizon for the receiving antenna, then
receiving antennas at a distance d > dp ¢+ dp s from the transmitting
antenna lie below the horizon ray of the transmitting antenna, and it
becomes convenient to calculate the transmission loss at such distances
in terms of the angular distance, 0. 3/ Over a smooth, spherical earth
and in a linear gradient atinosphere, € may be determined by:

d-diy -9, .
ka_""—-’—— radians (50)

Q=

The angular distance, 0, is a particularly convenient parameter for
making appropriate allowance for the effects of irregularities in the
terrain, and a detajled explanation of methods for calculating the
cumulative distribution of transmission loss in propagation over irregu-
lar terrain and for a wide range of atmospheric conditions is given in
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a recent report by Rice, Longley; and Norton. KiYj Thus it is shown in
that report that the received ficld on these beyond-the~horizon paths
may be considered to consist of diffracted and scaitered components,
The scattered component may be explained quantitatively for the
winter afternoon hours in terms of scatter by a turbulent atmosphere
using the mixing-in-gradient hypothesis as the basis for describing the
turbulence, i.e., the (r /JZO)Kl(r /10) correlation function may be used
to describe the correlation in the variations of refractive index at
points a distance r apart in the atmosphercxr’_,?/ Some direct experi-
mental evidence for this description of atmospheric turbulence is given
in a recent paper by the author. 58/ The extension of these estimates
of the transmission loss for winter afternoons to all-day, all-ycar

values is then done empirically, using the angular distance as a
parameter in this empirical analysis,

Fig. 48 shows the values of median basic transmission loss
separately for the diffracted wave and for tropospheric scatter as
calculated in the manncr described in reference 70 for the range of -
frequencies from 10 to 10, 000 Mc and for transmitting and receiving
antennas both at a height of 30 feet. If we assume that the short term
variations in the scatter fields are Rayleigh distributed, and that the
diffracted waves are relatively stecady, then we may determine the
expected cormnbined median basic transmission loss, me, in terms of
the diffracted wave transmission loss L, 4 and the median basic scatter
transmission loss, mes as follows:

L, =L, - R(0.5) (51)

where K = Ly - Lbrns +1.592 is the ratio in decibels of the average
scattered power to the diffracted wave power, and R(0,5) is given
graphically and in tables in reference 71. When K is less than -16.5 db,
Liym differs from L4 by less than 0.1 db, and when K is greater than
19.5 db, Lim differs from Lims by less than 0.1 db.

Finally, to determine the expected values, Lb(p), of basic
transmission loss exceeded by (100 - p) per cent of the hourly medians
during a year, we may simply subtract V{(p, 0} as given on Fig. 49
from L, as calculated above from the values shown on Fig. 48.

Fig. 50 shows the influence on the median basic transmission
loss at 100 Mc of changing one antenna height while keeping the other
antenna height fixed at 30 feet. The values given are for a smooth
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Medion Basic Transrission Loss in Decibels

_98_

MEDIAN BASIC TRANSMISSION LOSS FOR
THE GROUND WAVE AND TROPOSPHERIC SCATTER
MODES OF PROPAGATION OVER A SMOOTH SPHERICAL EARTH

Over Land ¢ =0.005 mhos/meter € =15

Polarization: Horizontal
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earth and a CRPL Reference N = 301 atmosphere. The first two
oscillations of the {ield are shown for d = 10 and 20 miles, but for the
other distances only one oscillation is shown., The six points of field
maxima are shown for all of the distances as circled points. Note
that the total number of maxima to be expected (as a function of range
at a given height or as a function of height at a given range) for a
particular antenna height is equal to the number of half wavelengths

contained in this height; in the present case of 100 Mc, 30 feet represents
6 half-wavelengths; in this connection, see (8), page 11.

The scatter curves on Fig., 50 correspond to the winter after-
noon hours, and the reader is referred toc reference 70 for curves
suitable for translating these values Lo transmission losses exceeded
for several percentages of various periods of tirne, The scatter loss
predictions on Fig. 50 are shown only up to heights just short of the
radio horizon since the method of estimation given in reference 70 is
not applicable to line-of-sight paths,

7. Point-to~-Point Radio Relaying by Tropespheric Scatter

As an example of the method of using transmission loss in
systems design, we will consider the problem of estimating the
effective maximum range of a radio relay system using tropospheric
scatter. As an illustration of typical ranges to be expected, we will
assumec that the terrain is smooth, and will base our predictions on
a CRPL Reference Radio Refractivity Atmospherce with Ny = 301, We
will assume that ecither two 28-foot or two 60-foot parabolic antennas
are used at both ends of the path, with their centers 30 fect above the
ground and connected in a quadruple diversity system. With these
assumptions, we may usec thc methods described in reference 70 tn
determine the transmission loss, L(99), which we would expect one
per cent of the actual hourly median transmission losses to exceed
throughout a period of one year; the use of thesc one per cent losses
implies that the specified scervice will be available for Y9% of the
hours., Tables 7.1 and 7.2 give for the 28' and 60' antennas the free
space gains Gy + G_., and the path antenna gains as a function of
frequency and distance, while Tables 7.3 and 7.4 give L{(99) as a
function of frequency and distance,

The power required to provide a specified type and grade of
service for 99% of the hcurs may now be obtained from the equation:

Pt=Lt+L(99)+R+F+B-ZO4 (52)
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Table 7.1

Path Antenna Gain in Decibels for 28-Foot Parabolic Antennas 30 Feet
Above a Smooth Spherical Earth with a CRPL Model Radio Refractivity

Atmosphere Corresponding to N = 301

ch Gt-f- Gr Gp in Decibels

ab d:l(?o 150 200 300 500 700 1000
mi.

100 | 33.02 | 33.02 33.02 33,02 32,92 32,8 32.72 32,67
150 | 40.07| 40.07 39.97 39.97 39.87 39.57 39.47 39.37
200 | 45,06 | 45.06 44,96 44,86 44,66 44,36 44,16 44.06
300 52,11} 52.03 51.91 51.71 51.31 50.81 50.51 50.41
500 | 60.98| 60,75 60.38 60.08 59,38 58.48 58.18 58.18
700 | 66.83| 66.35 65.83 65.23 64.33 63.23 62.83 62.93
1000 | 73,02 | 72.12 7l.22 70.42 69,22 67.92 67.32 67.22
1500 | 80.07| 78.32 76.57 75.87 74,27 72.57 71.67 71.57
2000 | 85.06| 82,48 80.66 79.26 77.16 75.46 74.36 73,86
3000 | 92.11} 87.71 84.21 83,41 80,91 78.51 77.61 77.31
5000 {100.98 | 93.28 90.18 B87.68 84.68 82.18 81.28 80.98
7000 |106.83 | 96.53 92.83 90.03 86,83 84.12 83,33 82,93
10000 {113.02 | 99.32 95,22 92,52 89.02 86,02 85,22 84.92
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Table 7.2

Path Antenna Gain in Decibels for 60-Foot Parabolic Antennas 30 Feet
Above a Smooth Spherical Earth with a CRPL Model Radio Refractivity
Atmosphere Corresponding to N, =301

ch Gt+ Gr Gp in IDecibels

db d:l(?O 150 200 300 500 700 1000
mi,

100 | 46.26 ) 46.16 46.16 46.06 45,86 45.46 45.26 45.16
150 53,31 | 53,21 53.11 52,91 52.51 52,11 51.56 51.48
200! 58.30 | 58.10 57.90 57.60 57.00 56,30 55.90 55.86
3000 65.35 ) 64.95 64.4% 63.95 62,85 62,05 61,70 61,90
500 74.22 | 73.22 72.67 71.02 70,22 6B.72 68.12 638.12
700{ 80.07 | 78,37 77.07 75.87 74.17 72.57 71.67 71.57
1000| 86.26 | 83,46 81.46 79.96 77.86 76.26 75.01 74.66
1500, 93,31 | 88.51 85.91 84,01 81,51 79.11 78.21 77.81
2000} 98.30} 91,70 88.80 86.60 83,70 81l.10 80,20 79.R0
3000) 105.35| 95.75 92.25 89.65 86.35 83.55 82,85 82.45
50001 114,22 |100,02 95.62 92,92 89,52 86.52 85,62 85.42
7000|120, 07 |102,37 97.87 94.97 91.17 88.22 87.57 87.07
10000 | 126.26 (104,56 99.96 96,66 93,06 90.06 89.26 88,76
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Table 7.3

Transmission Loss 1{99) (Corresponding to Fields Exceeded 99% of
the time) Expected Between Two 28-Foot Parabolic Antennas at a
Height of 30 Feet Above a Smooth Spherical Earth with a CRPL Model
Radio Refractivity Atmosphere Corresponding to NS = 301

1.(99) in Decibels

IMC d=100 150 200 300 500 700 1000
mi.

100 160.21 164.33 166,95 182,31 207.79 233.29 276.57
150 154,20 158.56 161.5 176.52 200.95 225.91 269.52
200 150.24 154.72 157.92 173.08 197.38 221.76 265.56
300 145.32 150.27 153,55 169.33 192.88 217.45 260,36
500 140,10 145.87 149.64 165.94 189.74 214.13 255.99

700 137.39 143,81 147.98 1¢4,83 188.55 213.08 254.05
1000 135,11 142.31 146.98 164.07 188.08 212.72 251.88
1500 133,32 141.88 146.32 164,50 188.91 213.41 254.20
2000 132,54 141.36 146.76 165.62 190.08 214.46 255,50
3000 132.70 143,69 148.71 168.01 193,39 217.50 257.99
5000 134.79 145,77 152.99 173.37 199.19 223.38 264.01
7000 137,37 149.86 158,13 179.75 206.98 231.32 272,13
10000 144,68 160.12 170.68 196,11 223,53 247.87 288.69

104



Table 7.4

Transmission Loss L(99) {Corresponding to Fields Exceeded 99% of
the time) Expected Between Two 60-Foot Parabolic Antennas at a
Height of 30 Feet Above a Smoouth Spherical Earth with a CRPL Model

Radio Refractivity Atmosphere Corresponding to Ns = 301

150

1.(99) in Decibels

Mec d:lQO 200 300 500 700 1000
mi,
100 147.07 151.19 153.91 169.37 195,15 220,75 264,08
150 141,06 145.52 148.63 163.88 188.41 213.83 257,41
200 137.20 141.78 145.19 160.74 185,44 210.02 253.76
300 132,40 127.73 141.31 157.79 18l.64 206,26 248,87
500 127.63 133.58 138.70 155,10 179.50 204.19 246.05
700 123,67 132.57 137.3 154,99 179,21 204,24 245.41
1000 123,77 132.07 137.44 155,43 179,74 205.03 244.44
1500 123,13 132.54 138.18 157.26 182.37 206.87 247.96
2000 123.32 133,22 139.43 159.08 184,45 208,62 249.56
3000 124.66 135,65 142.47 162.57 188.35 212.26 252,67
5000 128.05 140.34 147.75 168.53 194.85 219,04 259,57
7000 131.53 144,82 153.19 175.41 202.89 227,18 267.79
10000 139,44 155,38 166.54 192.07 219.49 243,83 284,85
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Tach of the terms in (52) is expressed in decibels; P; is the trans-
mitter power expressed in decibels above one watt; L, is the loss in
the transmitting antenna circuit and the transmitting antenna transmis-
sion line (this term is set equal to one db for the calculations in this
report); R is the median pre-detection signal-to-r.m. s, noise ratio
required for the specified grade of service; F is the effective receiver
noise figure and includes the effects of the antenna noise as well as

the receiver noise together with the receiving antenna circuit and
transmission line 1oss;_1/ it is assumed that the receiver incorpor-
ates gain adequate to ensure that the first circuit noise is detectable;

B =10 logyp(b, + bm) is the effective receiver bandwidth factor with

b, and b, expressed in cycles per second; b allows for the drift i
between the transmitter and receiver oscillators, while bm allows for

the band coccupied by the modulation; the constant term (-204) is

10 logmk T where k is Boltzmann's constant and the reference tempera-

ture is taken to be 288,44° Kelvin; this is just the noise power in a one

cycle per second bandwidth in db relative to one watt,

For the calculations in this report, the transmitter and
receiver gscillators were each assumed to have a stability ofzone
part in 10° and to vary independently so that b = N2 ch. 1077,

Table 7.5 gives the values of b, assumed for the various types of

service considered. The effective receiver noisc figure hias been
estimated as F = 5 log; ch - 5. Table 7.5 also gives the values of

R for the various kinds of service on the assumption that quadruple
diversity is used. The value of R for the FM Multichannel system

is expected to provide a service with less than an 0, 01% teletype
character error rate. The FM Multichannel System consists of 36
voice channels, each of which can accommodate sixteen 60 words per
minute teletype circuits. The values of R given in Table 7.5 were
determined by methods given in a recent report by Watt. 73/ The value
of R for the FM Muiltichannel system corresponds to typical fading
encountered at 1000 Mc, and this value of R may change by a few db |
with frequency as the fading changes, but such changes have so far nct

been evaluated quantitatively; furthermore, R will also change as the
fading changes from hour to hour.

Table 7.6 gives as a function of frequency the maximum
permissible hourly median transmission loss for a transmitter power
of 10 kw: LM = 204 + Py - Lt - R - F - B corresponding to the kinds
of service described above. By combining the information in Tables
7.3, 7.4, and 7.6, we can estimate the maximum range for a quadruple
diversity system with 10 kw transmitters. These ranges are shown on
Fig, A1 as a function of the radio frequency.

106



Table 7.5

Post Detection
Signal Signal-to
bm R* Bandwidth noise ratio
Type of Service | cycles/scc. | decibels| cycles/sec. decibels
Transmission
Loss Measure- 0 0# 0 -
ment
FM Multichan- |3, 750, 000 9.5 36 Voice 0. 01%

nel System channels each teletype

capable of use character
for sixteen 60 error rate
words per min,
teletype circuits

M Music 150, 000 26.5 15, 000 50 ¥%
U.S. Standard |3, 750, 000 32.7 | 3,750,000 30 **
Television

%

Ratic between the median intermediate frequency Rayleigh
distributed signal and the r.m.s. Rayleigh distributed noise.

** This ratio will be exceeded with a quadruple diversity system
for 99% of each hour for which the corresponding value of R is
maintained in each receiver.

#

Diversity reception not involved in this case,
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Table 7.6

Maximum Permissible Transmission Loss LM for 10 XW Transiniiters

Using the Parameters of Table 7.5

Transmission u. S. )

loss M FM Standard

ch Measurement Multichannel Music Television
100 236,50 162, 76 159. 74 139.56
150 233,85 161.88 158.86 138,68
200 231,98 161,26 158.23 138, 06
300 229.34 160, 37 157.35 137,17
500 226,01 159.27 156,25 136,07
700 223,82 158.54 155,51 135,34
1000 221.50 157,76 154, 74 134,56
1500 218,85 156, 88 153, 86 133,68
2000 216,98 156.25 153,23 133,05
3000 214, 34 155,37 152,35 132,17
5000 211,01 154,27 151.25 131.07
7000 208, 82 153,53 150,51 130, 33
16000 206,50 152,76 149,74 129,56
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Appendix I

The Attenuation of Radio Waves Propagated Between
a Perfectly Reflecting Spherical Ionosgheris Laye:
and a Sphericai Earth

The attenuation with which we are here concerning ourselves
is that due to the sprcading of the energy over Targer and larger areas

as it progresses further and further from the transmitting antenna.

For the sake of clarity in presentation, several simpler
problems will be solved first in order to illustrate the principles
involved. Consider {irst the attenuation of waves emanating from an
isotropic radiator in free spacce as in Fig. I-1. The total energy
passing through the differential clements of arca, dA1 and, dA,
normal to the radius vector and &t the unit of distince R1 and at R,
respectively, will be equal.

2
dA1 = R1 dk{rrl dy = R1 cos b dirdy (I-1)

k]
dA = R cos ¢ dy dy {I-2)

Now, if we let p. and P, represent the energy density per unit area at

1

the distances I{l and R, wu vbtain:

)= (A JAA) = RO/RS (1-4)

Thus we see that the field intensity (i.e., the energy density)

is inversely proportional in {ree space to the squarc of the distance

—
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from the source. In terms of transmission loss, this result may be

expressed:

Lbf(R) = Lbf(Rl) + 20 1ug10(R/R1) (I-5)

Consider next--sce Fig., [-2--the atienuvation of waves reflected
from a plane perfectly conducting ionosphere at a height, h, above a

plane carth and with no atmospheric refraction; in this case we have:

2
dA = - rdysinydr = R cos ¢ d dy (1-6)

In this case again we find that the attenuation of waves reflected from

a plane ionosphere is the same as in (I-5).

Finally consider~--sce Fig. 1 3--the attenuation of waves
reflected from a perfectly conducting spherical ionosphere and a2

perfectly conducting spherical carth with the effects of atmospheric

refraction includced:

dA - - ydyx sin ¢ dr ' (1I-7)

dr = 2ad?l (I-8)

y = asin20 {I-9)

dAa = - Za& sin 2 0 siny d 0 dy (1-10)

By Snell's law:

L+ N °10-60Kp(— c b YHa +h )
Q s 5

cos (g + 0 - 7) s

cos U

=C =

A (I-11)
{0+ N0° 10 cxp(-rqh) Ha + 1)

C=cos{l-71)-tanysin{ O - 7) (I-12)
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Since C is a constant, independent of 6, T and ), we find:

9C ac 3G A
dC = -5-5 d0 + —E)T dr 4+ — 841 dli 0 (1-15)
8C ,8C| (3 C 8C | dr
Thus (dB/dv) = f 55561 - 150 } = (1-14)
‘ .. Sinf0-m) o odr -
(d8/ay) = cos ycos & db (I-15)
In the pariticular case when 'y = 0;
{40 = - o = - - sk
(40 /d,“’)q,: + (dn /dq.u)qj: o k (I-16)
L{RY =1L, (R Y+ 101 “dA A L. {R) - C(R) (1-17)
(RY = LpelRy O%o\dAl/ bf' 1 ‘

Thus, if we substitute (I-10) and (I-1) in the above and solve for Cl(R)’

we obtain:

2
"R dA -
N
G,(R) = 10 log LY = 10 10g, | R® cot ¢
10\ R an / 100 5,2

sin 2 0 (dO_/dLlJ)

(1-18)

The function Cl(R) is a convergence factor, expressed in decibels,

which measures how much sironger the [i¢ld intensity at the receiving

point is for one reflection at a spherical ioncsphere than it would be

if it were plane.

The generalization of this expression to m reflections at the
ionosphere may be obtained by noting that the only changes required

in the above analysis are:

* Note that k here refers to the ratio between the effective and actual
radii of the earth.



dr =2mad®9 (1I-19)
y=asin2m @ (1-20)

Thus the convergence factor for m ionospheric reflections may be

written:
R 1./ _Rcosd
= S -2
Cm(R) 10 loglo{L - Zmasin y (d0/dp) Jv Lta sin 2m 6 5 (I-21})
The a

bove expression has been divided into two factors with subscripts
v and h so that the convergence of the rays in the vertical and hori-

zontal planes, respectively, can be considered secparately.

If we introduce the approximate expression
R £ 2ma sin J/sin ¢ into (I-21) above, we obtain:
O
sin © ] rcnxsulecostb\ e
=~ 1 .’ .
CpfR) =10 ]Ogloi - sin ¢ sin ¢ (d6/af) | T sin 6_sinZzm ef (1-21a)

‘v

The above expression indicates that the convergence in the vertical
planc at points far rumoved from a caustic is independent of the

number of ionospheric reflections for a given angle, .

Note that the convergence in the vertical plane becomes

infinite when § approaches zero; this infinite convergence is demon-

strated on Fig. 25. Similarly, the convergence in the horizontal

planc becomes infinite at the antipode of the transmitter where

Zm U = w, Actually, of coursc, the received energy is finite at these

points, and we may use Airy's integral to evaluate the convergence in

1/
the vertical plane when ¢ = 0. It can be shown & by the solution of

the two dimensional wave equation that:

) f -2 .
C,(R) =10 log) 4 "2"(¢)J : 11-22)

where @ = 27R/N is the phase of the waves at the recciving point, If




we multiply the numerator and denominator of the first term in

{1-21} by 2w/ and compare the results with (I-22), we find:
Q" () = 4um {af\) sin ¢ (d8/d))

Now we sec that the above second derivative of the phase is equal to
zero when the convergence factor becomes infinite; this is the
definition of a caustic and the convergence at this caustic may be

evaluated by means of the third derivative at this point:
am ()= - 4nmk(a/\) (L= 0)
Thus, at the caustic in the vertical plane, CV(R) may be expressed:

027 {Ai(O)}z

C {R) =10 log : ~ 273 (1-23)
Iy 1ol [1 om | Ji
Lz )
In the above A,l(O) is the Airy integral—~ with argument zero:

27 {Ai(O)}Z = 0.79196357,

From the above results we obtain the following exprcssion

for Cm(R) at the caustic in the vertical plane:

2m(R/\) 0.792 | | R
C (R)=101log I : .4 - (b <0)
m 10 [ank(a/)\)]zlg Jv . a sin Zm(Gm - k) }h

(I-24)

The convergence at the antipode of the transmitter is of a

semewhat different nature, Note, in particular, that there is no

point of stationary phasc with respect to variations in the azimuth
angle, x, since the waves appear Lo be arriving from all directions
at this particular point. The followinyg treatment of this problem
is due to J, R. V‘.’ait.lg/



Using a cylindrical coordinate system centered at the antipode
{i.e., p» ¥» 2), we may obtain the following axially symmetric

solution of the wave equation, for a time factor exp (iot):

Ez = A exp| - ik(Ra + z sin )] Jo(k p cos ) (1-25)
H = B exp[-ik (Ra 4+ 2z sin ) Jl'(kp cos W) (I-25a)

where k = 2w /), Ra. is the distance along the ray path to the antipode,
A and B are constants, and JO and .T1 denote Bessel functions. For
the ground wave and for those ionospheric modes for which m is

sufficiently small so that § is negative at the antipode, § should be

set equal to =c

f

oin {I-25) ana {I-2%a). Notc that, in addition to the

ascillations with time, the magnitudes of £ and H_ oscillate with the
£

»
7

distance p from the antipode, E having ils maximum value at the
2 :

antipode while H is equal to zero at the antipodce, Note also that the
X

variation with p is the same, independent of the azimuth angle,
this would be expected since we have assumed that our sourcce radiates

uniformly in all directions. When kp cos P > > 1, we may replace the

Bessel functions by the first terms in their asymptotic expansions

and obtain:

a0

o= Acexp(-ikz sin ) -

ap{i[k(p cosd - R_l) w41} +exp {-ilk{p cos + Ra) -mn/al}
2 | -

NZ2nkp cos ¢ }

(1-26)
cexp {i[k(p cos ¢ - Ra) - /4]) - exp {-i[k(p cos 4 Ra)-ﬂ/4]}

H = -iBexp{-ikz sin '! }
[ ! g e e 2
NEFES" p cos U

(I-26a)
The two exponential terms in the above may be identified with waves

arriving from opposite directions at a receiving point at a distance p

from the antipode along great circle paths of lengths R - p cos Y and
a

Ta




Ra + p cos ), respectively, It is the interference between thesc

two waves which causes the oscillations in the magnitude of the field

near the antipodc.,

To completc our solution we need only evaluate the constants
A and B. Rather than doing this directly, we note by (I-21) that thc
geometrical theory indicates that the focusing in the horizontal plane
not too near the antipode is given by:

R cos § o
“h ™ asin2m0 (em <) (1-2,7)

and if we multiply {(I-27) by the square of the ratio of ‘Ez' as given
by (I-25) and by the first terrm in (I-206), wce obtain the following

expression for <, which must be used instead of (1-27) at points very
1

near the antipode:

R cos

2
L S B | 05 . _
Ch asin2zm0 l"m(k p cos )] dukpcosy (1-28)

When we note that p = a sin(m - 2m ), the above reduces to:

)

‘. Z
€ - 2k R cos [Jo(k p cos $)] (1-29)

For the ground wave R = ma and y = 0; thus, at the antipode

2
= 2 LTI O ¥ v L 2] ¥ s is
L udl! ind (Jh 10 10;,10Lh 34,210 4 10 10510 f}“, and this

clearly represents an extremely large focusing effect for the ground

wave atl and near this point.  The tocusing in the horizontal plane

for the sky wave modes is only slightly diffvr(.-nt,* but we must add to
this the focusing in the vertical planc to obtain the total focusing for
thuse modes. {I-29) is for a vertical electric dipole receiving

antenna; if a horizontal magnetic dipole were used for reception, then

the .]'0 should be replaced by Jl'

Note that cos ¢ > 0,995 Jor in = 16, and cos ¢ = 1 for m = 8 when
h = 90 km.

ThH




All of the above discussion applies to the case when the
effective reflecting surface of the icnosphere is smooth and concentric
with the surface of the earth, In practice, as the sun rises and sets,
or as the geomagnetic laiiiude of the reflection point is varied, the
surface of the ionosphere will undoubtedly change in such a way that
its radius of curvature and slope relative to a tangent plane on the
earth will vary over appreciable ranges; and this will cause Cm(R)
to vary up and down relative to the values expected on the basis of

the above analysis. However, except near the antipode, it seems

plausible to assume that the median values of Cm(R) may not be

much influenced by such changes. The magnitude of the antipodal

anomaly will be substantially reduced by these macroscopic
Y Y Y

perturbations of the spherical concentric shell model assumed for
our calculations. Note alsc that there will be concentric rings around
the antipode at which the expected field will be equal to zero. The

radii of these concentric rings arc the same, regardless of the

number, m, of lonospheric reflections, and are determined by the
zeros of the Bessel functions; for the electric ficld, the first two
such rings have radii c¢qual to 0.38\ and 0, 88\, Note, however, that
the geographical location of the centers of the antipodal anomalies
may be expected to be sommcwhat different for the diffcrent modes for

the actual nou-concentric ionosphere, and thus these zeros are not

likely to be obscrvable unless some means is used to exploit their

diffcrent times of arrival, The shifts in the geographical locations

of the anomalies caused by these macroscopic changes in the iono-
sphere would be expected to result in a net increase in the fading
range in the neighborhood ot the antipode,

In addition to these systematic macroscopic changes in the iono-
sphere, the reflecting surface of the ionosphere will be locally rough,

and we will sec¢ inthe following analysis how this local roughness may




be expected to reduce the median values of convergence as computed

above for a smooth concentric ionospherc.

We have scen above that the convergence depends, at a given
receiving point, upon the smoeth variation of the phasc of the received
waves with changes in elevation anglce and azimuth. If we let T,
denote the standard deviation of the phase of the waves received via

m hops, then we may usc Rayleigh's criterion of ionospheric rough-

ness (sce Section 2 for a discussion of Rayleigh's criterion as applied

to ground roughness) to calculate L in terms of the variance, ) of
the local cffective reflection heights, h, of the ionosphere at the
points of stationary phasc.
720° 7 cos & Nm
o= (I-30)

(@] \

Note that the variance,o of phasc consists of components arising

o
from (a) a drift of a fixed pattern of ionospheric irregularities
relative to a reference great-circle~-smooth-concentric-ionosphere

path, (b) changes in the shape of these irregularities with time, and

plane.

. %
. . 4 . . - . . - - . .
Prennan an i Fhillips ~ find that variations with time of the intensi

t
and phase of a onc-hop transmission at £43 kc over a 380 mile path

at night indicate rather conclusively that they may be described

adequately most of the time by assuming that the received waves

consist of a steady component with cénstant phase and approximately
constant amplitude plus a random Rayleigh distributed component of
relative intensity kz and random relative phase; the amplitude

distribution expected in this case is given on Fig. 5 with

2
K =10 loglok . The fixed component may be identified with a
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specular reflection expected from the reference smooth surface
while the random component arises from the surface roughness. It
now becomes clear how ionospheric roughness may be expected to
affect the convergence; the specular ceinponent will be incrcased
C (R) db whereas the random component, since its phase is, random,
m
will not be increased at ail. If we write C (R) =10 log, . ¢, then
m 710 m
we find the following expression for the convergence factor Cm(R, P)
N

exceeded 100 p % of the time in terms of the values of k (1 - p)

excceded 100(1 - p)5 of the time:

C (R, p)= 101log, . " (1-31)

pA
Note that k" (1 - p) approaches zero as p approaches zero, and thus
Cm(R, p) approaches Cm(R), the value expected for a smooth
2
jonosphere, as p approaches zero. On the other hand, k (1-p)

approaches o for a perfectly rough ionosphere, and in this case

there will be no convergence and Cm(R, p) approaches zero.

The values of kz to be used in (I-31) may, in princi;.lz, be
determined from observations of the variations in either the amplitude
or the phase of the waves corresponding to a single mode of propaga-
tion. However, it is ordinarily better in practice to use the variations
in phasé as an index to kz since the amplitudes of the received waves
also vary with ionospheric absorption, and it is sometimes difficult
to separate ~ut these absorption variations from the amplitude
wariations arising from surface roughness alone. In Table I-1 are

. In some cases

tabulated some experimental measurements of o

the required variance was observed directly, but in other cases it
had to be estimated from phase difference measurements made on

paths with one common terminal, but with their othesr terminals

Reproduced F
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Best Available Copy
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separated by S wavelengths, In this latter case the observed phase
2
difference was related to o_ as follows:
. 2. 2
crz =2(1 -p o, (I-32)

obs.

.

In the above p is the correlation between the phase variations along
the two independent paths. The correlation will vary from p =1 for
S=0top =0 for S>40N, Although direct measurements of p dc not
appear to be available in the literature, it seems reasonable to
assume that p will be of the same order of magnitude as the correla-
tion between the amplitude variaticns on paths separated a distance

S 2t onc end. Measurements of the latter correlaticn were reported

in reference 3, and thesc data constituted the basis for the estimates

in Table I-1.

Using (I-30) ¢stin ates of o, can also be made, and these
gt " :

are also given in Table I-1 and shown on Fig. I-4. Although the data

are ;uite scattered, the curved lines labelled day and night, respectively,
represent the estimates used in this report for calculating the median
values of o_ using (I-30). It should be noted that o is itself a random
variable which changes over wide ranges from hour to hour and from

day to day. For example, an analysis of the data in reference 3 shows

that the observed phase differences, o , ranged from 5.3° to more

obs
than 180° 10 of the valucs exceeded 118°, 20° excreded 34° and 907

exceeded 14°. We will sce below that the maxinium value of o to
obs.
be expected in practice is 103.9 x V2 = 147°, which corresponds to
2
kX = o, and only 2% of their observed valucs excecded this value,

. 2 S
The relation between o_ and k has becn obtained on the
assumptiion that the data fit the Rice distribution of a constant vector

plus a Rayleigh distributed vector. By integrating over the joint

iad
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probability distribution givew by Rice for all of the variables excopt
2, we obtain the following expression for the probability density

. 2
function for @ with k~ as a parameter:

2 2
2vp () = {1+ Nuw zexp (2 )]l + erf (2)]} exp (-1/k ) (I-33)
] cos @ - . : . s
where z = 5 Fig. I-5 shows p{0) is symmetrically distributed

2 2
about zero for all values of k . When k is very small, sin @ is
distributed approximately normally about zero with variance
2
Tsin ©
between - 180° and +180° and L approaches 103.923 degrees. Fig, I-6

2 2 o
=k f2, When k approeaches infinity, ©is uniformly distributed

gives the cumulative distribution defined by:

AP)
Pl{o(t)> o(P)]=1 - (p(ﬂ)dﬂ (i-34)
-
_ ) 2 .
The mecan absolute value IO' and variance “o arc also of interest:
m
— r
[9] = 2 { 0p(0)dn (I-35)
O
T
2 o2
o- =2 ( 0" () d o (I-36)
o

For many applications the curnulative distribution of the absolute

value of |’7('r)] is of greater interest:~

P ]o(t)] > o(pn)]=2P[a(t) > (P)] (I-37)

The distribution of P' is given in a2 rccent paper o1 and several of its
percentage points, lugether with |7 and 9, are shown on Fig, 1-7
as a function of kZ. By using the mecdian values of vy determined
from Fig, I-4, we may use the results shown on Fig, I-7 to determine

2
the median values of k (0. 5) required for the evaluation of Cm(R, 0.5).

14
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THE PROBABILITY DENSITY FUNCTION p(Q)
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STATISTICS OF THE DISTRIBUTION OF THE PHASE
OF A CONSTANT VECTOR PLUS A RAYLEIGH DISTRIBUTED VECTOR
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Table I-Z below gives the values of !7;} and of &

2

values of k“,

, for scveral

Table I-2
k ]F;l Ty [GI T
radians radians degrees degrees
0.01 0.056514 0.070890 3.2380 4.0617
0.02 0.080059 0.10051 4.5871 5.7590
0. 05 0.12726 0.16023 7.2915 9.1803
0.1 0.18172 0.23013 10.412 13.185
0.2 0.26330 0.34032 15,086 19.499
0.5 0.44605 0.60664 25.557 34,758
1 0.64346 0.87134 36,868 49.924
2 0.85196 1.1175 48,813 64031
5 1.0876 1. 3461 62.313 78,270
10 1.2217 1.4972 09.999 85,785
20 1.3212 1.5907 75,701 91,142
50 1.4119 1.6735 80.896 95, 884
100 1.4582 1.7149 83.547 98, 259
200 1.4911 1.7441 85.431 99,929
500 1.5203 1.7698 87.107 101,40
1000 1.5351 1,.7827 37,953 102. 14
oo w/2 n /N3 90, 000 103,02

18



An analysis was made in reference 3 of both the amplitude
variations on single paths as well as the phasc differences between
paths separated by 3. 39 wavelengths at one end. Using their observed
median standard deviation of Tobs. = 34°, the median value o = 41°
given in Table I-1 was estimated; this value corresponds by Fig., 1-7
to kz(o.‘ 5) = 0. 68, The analysis of their amplitude variations gives
directly the cstimate kZ(O. 5)=2/a 2: 0.854, and this latter estimate

is somewhat larger, as might have been expected, since the amplitude

variations are biased by changes in absorption,

19
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Appendix 11
The Physics of Ionospheric Scatter Propagation
£4 &
Wheelon 54) 55/ 56/ gives the following formula for the

scattered power, P relative to the power, Py expected for propa-

gation over the same distance in free space:

(pg/pi_) = 47 b sec & (T(kz) (11-1)
(Y(I{Z) = constant ri < [d N() /dhjz EZ > f(kz) (II_Z)

5 -5/2 2 -4/3
f(kc) =1+ kz fo] [1 + (kz ﬂi)zla] 1+ (kz [i)z] (11-3)

The dimensionless constant in (11-2) is of the order of unity, and will
be sct equal to onc in the subsequent anulysis; k2 is defined by (32).

[d Ne/dh] is the gradient of the electron density expressed in

electrons /cubic meter /meter; b is the effective thickness of the
scattering layer expressed in meters; the classical clectron radius,

r, = 2,.81785 10-15 meters and JZO is the scale of turbulence expressed

in meters.

2
Note that when { = fMUF we have k= 0 and £(0) = 1. The constant

5(0,5) = - 8.4 db determined from the radio data may be readily
identified with;

5(0.5) =10 log10 47 b o(0) = - 8.4 (I1-4)
Consequently it follows that;

2 2 5
4rb r_ < [d N_/dn] 1;>= 0.1445 (II-%)




I we let b = 10, 000 meters, we obtain:

2 22 ,
< [d N_/dn] fz > = 14,48 X 10 (11-6)

Note that the average indicated by < > is taken over the scattering
volume. In the troposphere it has been found that 10 is a random
variable with respect to time at a fixed point and with respect to
location at a fixed time;j more specifically, L = 10 log10 !o has been
found to be normally distributed about its median value fom with

O—L = 5db., It seems noi unreasonable to assume a similar variability
for ‘ in the ionosphere. Similarly we may assumec that [d N, /dh]‘2 is
log -normally distributed about its median value [d Ne /dh]fn with a

similar standard deviation, i.e., about 5 db. On thesc assurnptions

55/

it can be shown—' by simple statistical analysis that:
2 5 2 5 2
< [d dh]™ 2 > = dh ! cxp[0. 02651 Ii-7
[ Nc/ ] o [d Ne/ ]m orn © [ . ( )

In the above, o denotes the standard deviation, expressed in decibels,
of 10 1og10{[d Ne/dh]z .li}; if we neglect any correlation hetween the
variations of [d Ne /dh] and of !O, then rTZ = (‘3)2 + (25)2 = 650 and

exp [0. 02651 crz] = 3.045 x ],07. If we combine {11-7) and (11-0) and

set Iom = 100 meters, we obtain [d Ne /dh]m = 690 clectrons/c,c/
kilometer, If this value is comparcd with the value 3, 800 electrons/

¢, ¢. /kilometer expected with 02 = 0, we see the importance of allowing
for this statistical correction; the actual value probably lies somewhere
between these twe cstimates, and can he estimated mor= precis

when more adequate information becomes available relative to the

variances of these variables.

The above analysis refers to the scatter cvapected for frequencies

just above the E layer MUF. The forward scatter on the higher

I11-2




frequencics where S was actually evaluated becomes independent of ﬂo

2 2.-5/2 -5 _ 2 2
since [1+ k 10] >/ =k 105 when k !O >>1. Inthis case the
correction factor should be determined for ¢ = 25, i.e.,

. 2 .
exp[0. 0265 ¢ ] = 1. 940 and the expected median gradient on these

assumptions is then 270C clectrons/c.c. /km.

It appears from the above analysis that S may increase with
decreasing frequency because of the increasing importance of the
variance of ..'?0 at these lower frequencies, This statistical factor should
not be ignored in analyses of ionospheric scatter data. However, it
was suppressed in the present analysis because of the lack of definitive

2
data on o ,

Note that scale lengths of the order of lom = 100 meters and
electron density gradients of the order of 1, 000 electrons/c.c. /km,
are not unreasonable values to assume for the lower ionosphere, and
we conclude that Wheelon's theory provides a uscful description of
ionospheric turbulence which is not inconsistent with our knowledge

of the ionosphcre,



Appendix I11
An Additional Height-Gain Factor in Transmission Loss
In free space the field strength e, expressed in volts per meter

at a distance d, expressed in meters, from an isotropic transmitting

antenna radiating p watts may be determined from the relation:
r

2
4w d

{Radiation from an isotropic
antenna in frece space)

-7
where z = 47 ¢+ 10 = impedance of free space expressed in ohms,
and ¢ = 2.997925. 10 meters per second = vcluciiy of light in frec

Spacdc,

Now consider the intensity of the radiation field of a short
vertical electric dipole antenna of length £ and at a height ha above a
perfectly conducting planc. By re-distributing the field in the space
above the plane, the radiation resistance is modified by the presence

of the surface as follows:

szl’z - 54
R = -~ [1 + & ] (II1-2)
e 3\2 a
3 r sin (2 a 1 .
A = : - - cos ik h } . (IIr-3)~
a (2k I )2 | 2k ha ' a’ |
a

* These relations are derived by S.A. Schelkunoff in Chapters VI and IX
of the book "Electromagnetic Waves, " D. Van Nostrand Company, 1943.

II1-1




In the above k = Zu/x = 2% {/c, i.e., } is the wavelength in frec space.
Note that Aa approachcs zero at large heights above the surface, and
Re approaches its free space value. On the other hand Aa =1for
ha = 0, and the radiation resistance is then just twicce its free space
value, Using (ITI-2) we find that the field intensity of the short dipole -
over the perfectly conducting ‘blallc surface may be expresscd:

92 pr(3/2)[2 cos Yy cos (k ha sin u'r')]Z

= > (I11-4)
4m d7[1 b aa]

Z

{Radiation from a short vertical clectric

dipoie over a perfectly conducting surface)
Note that the factor (3/2) is just the free space gain of the short dipole
antenna. Since Ad =1 for ha = 0, the field intensity is 3 db greater
when ¢ = 0 for a dipole on the surface of a perfecily conducting plane
than for a short dipole in free space. In more familiar units (II1-4)
with ha = ¢ = 0 may be expressed:

(v /meter) = 299, 896, 2 VB(kw) /dknﬁ (h.] == 0) (ITI-5)

Furthermore, the cffective absorbing area of a short vertical
electric dipole antenna at a height hb above a perfectly conducting

planc may be expressod;
(O1-6)

where Ab is defined by (III-3) with_ha replaced by hb.
Combining (III-4) and (I0-6) we may express the transmission
loss in decibels between short vertical electric dipoles at heights hH and

h, above a perfectly conducting plane as follows:
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L=L,-G -G +A ({117}

bf t r
A= -20 logm[Z COSZLIJ cos (k ha sin $)] + La + L (II1-8)
=1 1m1-9
La,b 0 log10 {1+ Aa., b] (111-9)

Note that Lbf is the basic transmission loss expected in {ree space,

Gt = Gr = 1. 761 db, and that the transmission loss, A, relative to free
space contains iwo height gain factors which are not ordinarily con-
sidered in field strength calculations. No allowance was made in the
calculations in this report for the additional losses La and Lb which
arisc from the redistribution of the field intensity in spacc which, in
turn, is associated with the proximity of the antennas to the ground.
Thus the transmission losses shown on Figs. 7, 8, 16, 17, 18, 19, 20,
21, 27, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, ectc. are too small by
an amount ranging from about 6 db at very low frequencies and low
antenna heights to zero at the higher frequencies. Fig. I1I-1 shows
this additional loss as a function of antenna hcight (h/X\), c¢xpressed in
wavelengths, for the case of a perfectly reflecting surface, and this
should also represont a good approximation in those cascs where the
antennas are erccted over large ground screens,

It is of intcrest, although not surprising, to note that the
transmission loss between vertical electric dipoles on the surface of
a perfectly conducting plane (ha = h, = = 0) is the sarne as if the

b
dipoles were in free space, eoven though the field intensity at the surface

is 3 db grcater.
It should be noted that Schelkunoff identified the factors in
(I11I-2) somewhat differently; thus he considered the ground to be an

integral part of the antennas, and set Gt =10 log _ {3722/t & Aa]‘r,

10
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Gr = 10 logw {(z/2ye2/1 + Ab]} and A = - 20 loglo[cos&t,l/ cos(kha siny)].
It seems 1o this writer that the terms 10 loglo[l + Azn, L’. should be
excluded from C’L and Gr. Thus, according to this approach, Gt‘ and

Gr are the free space gains of the antennas, independently of their
location, and the path antenna gain Gp, when measurcd by replacing

the actual antennas by isotropic antennas, will still be approximately

equal to G, + G .
t r

Supposec now that we use small loop antennas of area S, with
their axes normal to the plane of propagation, parallel to the perfectly

conducting surface and at heights h and h , respectively. In this
a

b'
case:
8 3.2
_ ™ Z 5 ' -
Rm = g [1+ A_b] (II1-10)
3x
. . sin {2k h_ ) cos (2k h_) -
) 1 \ b b’
A' = {5/2)[ 1 - ~ A + [
) Y A 2
b AN (2x h )" 7 khy, (2k h )
b b
(IT1-11)
Ay ZI’) B Y
L € 210 )
S (O (mi-12)
A= - 20 10g10 [2 cos {k ha sin Y)] + L; + L;} (i17-13)
Note that A'} approaches zcero at large heights and A'b = 1for hb = 0.
)

Consider next the transmission loss between two small loop
antennas at heights ha and hb, respectively, above a perfectly conduct-
ing surface with their axes normal to this surface. In this case:

8wz 5

R = ———— [1 - 4] (TI1-14)
m 3)\4
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A= -20 ].ogm[?. cos Y sin (k ha sin ¢)] + L; + L,; (TTT-15)

ax - - 1-16
X a b 10 loglo['l A (11 )

1

a, b]

The factor 1.Y is also shown as a function of (h/\) on Fig. III-1.

Finally consider the transmission loss between two short
horizontal electric dipoles of length £, normal to the plane of propaga-
tion and at heights ha and hb, respectively, above a perfectly conducting

lane surface, In this case:
P

2
R - 2 z 4 [1 - AIJ (EI".’?)
C 2
3N
= - 2 si ain Y7 - m m _
A 20 tog, o [2 sin (kb sin )]+ LY + L (TT-18)

= 10 log10 [1- A,; (T11-19)

"
La, b b]

Note that L™ and L" both approach (- n) as h approaches zero, but the
radiation resistance R simultanecusly approaches zero, and it would be
difficult in practice to keep the radiated power constant as the antennas
are brought ncarcr and ncarer to the surface, When ha and hb are

both much less than a wavelength, A, as defined by (I11-15) for horizontal
loops becomes independent of these heights and equal to A=20 ].oglo(kd/S);

similarly A, as defined by (I11-18) for horizontal clectric dipoles approaches

20 loglo(z kd/5) for ha and hb much less than a wavclength.

Since the factors Lg, and Ll')" were omiitted in calculating the
transmission losses shown on Figs. 9 and 10, these values are much
too large at the lower frequencies since the 30.foot antennas are in this

case only a small fraction of a wavelength above the surface.
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All of the above results refer to the case of a perfectly

or the factor 2 sin (k ha sin ) in (III-15) and (II1-18) must be replaced
by the appropriate attenuation factor, 2 W, relative to the {ree space
field. For example, for electric dipoles over a flat earth of finite
conductivity and wwith ha = hb = 0:

W = [1+i~Nmp exp (- p)erfc (-inNp | (I11-20)

Here p denotes Sommerfeld's numerical distance as defined in reference

12 where a comprehensive discussion is given of the radiation fields of

4]

lectric and magnetic dipoles over a finitely conducting plane earth,
Furthermeore, A and A' will be modified when the antennas are located
over a finite ground, Vyyy but this difference will often largely be
cancelled in practice if a large ground screen is used under the
antennas. Although (ITI-14) indicates that Rm approaches zero as the

vertical magnetic dipoles approach the perte

o

tiy conducting surface,
!
Wait ) hhas shown that R becomes very large when such loops are
m

brought near a finiiely conducting ground.

It is sometimes convenient to be able to relate the basic trans-

W

mission loss, f to the field strength e:

b)

, ~ ~ 2 2
pa/ib =p, - (e /z)e(N /[4m) {I1I1-21)

(Isotropic antennas in free space)
Expressed in decibels, we obtain from (III-21):

- E (III-22)

+ P
ke r b

Lb = 77.216 + 20 1og10 f
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In the above, P is the radiated powcs evpressed in db above
r

one kilowatt, and Eb is the field strength in 4b above one microvoll per

meter. If antennas with free space gains Gt and Gr arc used, we find

that Et =E + Gt’ and the transmission loss between thesz antennas in

b
free space may be expressed:

[\

= -G - = 16 + 201 f  + - E - (I1I-
L Lb Ut Gr 77.216 + 20 8¢ Ikc: Pr ¢ G {

{Antennas with gains Gt and G in free space)
r

For a half wave dipole transmitting antenna Gt = 2.15 db, and we obtain

from the above the relation given at the bottom of page two of the report.
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